首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I.  相似文献   

2.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

3.
DNA的图形编码是在几何意义下,在不同位置,用不同的标记符号及不同的方向线段,对DNA的序列进行编码.DNA图形编码相对于DNA的字符编码而言,具有直观、简明、形象和便于比较局部DNA序列的相似性等特点。在分析已知各类:DNA的图形表示模式的基础上,提出一种DNA序列的“双符三阶”图形编码,并以此对一些特异DNA编码序列进行分析。DNA图形编码与DNA字符编码呈一一对应关系,具有简便易行、编译方便、形象丰富、便于比较等优点。适用于DNA短序列的相似性检测与分析,在生物信息学上有一定的应用前景。  相似文献   

4.
Obtaining quantities of highly pure duplex DNA is a bottleneck in the biophysical analysis of protein–DNA complexes. In traditional DNA purification methods, the individual cognate DNA strands are purified separately before annealing to form DNA duplexes. This approach works well for palindromic sequences, in which top and bottom strands are identical and duplex formation is typically complete. However, in cases where the DNA is non-palindromic, excess of single-stranded DNA must be removed through additional purification steps to prevent it from interfering in further experiments. Here we describe and apply a novel reversed-phase ion-pair liquid chromatography purification method for double-stranded DNA ranging in lengths from 17 to 51 bp. Both palindromic and non-palindromic DNA can be readily purified. This method has the unique ability to separate blunt double-stranded DNA from pre-attenuated (n-1, n-2, etc) synthesis products, and from DNA duplexes with single base pair overhangs. Additionally, palindromic DNA sequences with only minor differences in the central spacer sequence of the DNA can be separated, and the purified DNA is suitable for co-crystallization of protein–DNA complexes. Thus, double-stranded ion-pair liquid chromatography is a useful approach for duplex DNA purification for many applications.  相似文献   

5.
DNA ligase I is responsible for joining Okazaki fragments during DNA replication. An additional proposed role for DNA ligase I is sealing nicks generated during excision repair. Previous studies have shown that there is a physical interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA), another important component of DNA replication and repair. The results shown here indicate that human PCNA enhances the reaction rate of human DNA ligase I up to 5-fold. The stimulation is specific to DNA ligase I because T4 DNA ligase is not affected. Electrophoretic mobility shift assays indicate that PCNA improves the binding of DNA ligase I to the ligation site. Increasing the DNA ligase I concentration leads to a reduction in PCNA stimulation, consistent with PCNA-directed improvement of DNA ligase I binding to its DNA substrate. Two experiments show that PCNA is required to encircle duplex DNA to enhance DNA ligase I activity. Biotin-streptavidin conjugations at the ends of a linear substrate inhibit PCNA stimulation. PCNA cannot enhance ligation on a circular substrate without the addition of replication factor C, which is the protein responsible for loading PCNA onto duplex DNA. These results show that PCNA is responsible for the stable association of DNA ligase I to nicked duplex DNA.  相似文献   

6.
DNA ligase is the enzyme that catalyzes the formation of the backbone phosphodiester bond between the 5'-PO(4) and 3'-OH of adjacent DNA nucleotides at single-stranded nicks. These nicks occur between Okazaki fragments during replication of the lagging strand of the DNA as well as during DNA repair and recombination. As essential enzymes for DNA replication, the NAD(+)-dependent DNA ligases of pathogenic bacteria are potential targets for the development of antibacterial drugs. For the purposes of drug discovery, a high-throughput assay for DNA ligase activity is invaluable. This article describes a straightforward, fluorescence resonance energy transfer-based DNA ligase assay that is well suited for high-throughput screening for DNA ligase inhibitors as well as for use in enzyme kinetics studies. Its use is demonstrated for measurement of the steady-state kinetic constants of Haemophilus influenzae NAD(+)-dependent DNA ligase and for measurement of the potency of an inhibitor of this enzyme.  相似文献   

7.
Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.  相似文献   

8.
Two distinct DNA ligases from Drosophila melanogaster embryos   总被引:5,自引:0,他引:5  
M Takahashi  M Senshu 《FEBS letters》1987,213(2):345-352
Embryos of Drosophila melanogaster contain two distinct DNA ligases (DNA ligase I and II). DNA ligase I was eluted at 0.2 M KCl and DNA ligase II at 0.6 M KCl on phosphocellulose column chromatography. The former was rich in early developing embryos and its activity decreased during embryonic development. The latter was found constantly throughout the developing stages of embryos. DNA ligase I existed in a cytoplasmic fraction and DNA ligase II is concentrated in nuclei. Both enzymes ligate 5'-phosphoryl and 3'-hydroxyl groups in oligo(dT) in the presence of poly(dA). DNA ligase II is also able to join oligo(dT)(poly(rA). Both enzymes require ATP and Mg2+ for activity. The Km for ATP is 2.7 X 10(-6) M for DNA ligase I, and 3.0 X 10(-5) M for DNA ligase II. DNA ligase I requires dithiothreitol and polyvinyl alcohol, but DNA ligase II does not. Both enzymes are inhibited in the presence of N-ethylmaleimide. DNA ligase I is active at a low salt concentration (0-30 mM KCl), but DNA ligase II is active at high salt concentrations (50-100 mM). DNA ligase I is more labile than DNA ligase II. The molecular masses of DNA ligase-AMP adducts were determined as 86 and 75 kDa for DNA ligase I, and as 70 (major protein) and 90 kDa (minor protein) for DNA ligase II under denaturing conditions. A sedimentation coefficient of 4.2 S was observed for DNA ligase II. Consequently, Drosophila DNA ligase I and II are quite similar to mammalian DNA ligase I and II. Drosophila DNA ligase I and a DNA ligase by B.A. Rabin et al. [(1986) J. Biol. Chem. 261, 10637-10645] seem to be the same enzyme.  相似文献   

9.
Replication protein A (RP-A) is a heterotrimeric single-stranded DNA binding protein with important functions in DNA replication, DNA repair and DNA recombination. We have found that RP-A from calf thymus can unwind DNA in the absence of ATP and MgCl2, two essential cofactors for bona fide DNA helicases (Georgaki, A., Strack, B., Podust, V. and Hübscher, U. FEBS Lett. 308, 240-244, 1992). DNA unwinding by RP-A was found to be sensitive to MgCl2, ATP, heating and freezing/thawing. Escherichia coli single stranded DNA binding protein at concentrations that coat the single stranded regions had no influence on DNA unwinding by RP-A suggesting that RP-A binds fast and tightly to single-stranded DNA. DNA unwinding by RP-A did not show directionality. Experiments with monoclonal antibodies strongly suggested that the 70kDa subunit is responsible for DNA unwinding. Phosphorylation of the 32kDa subunit of RP-A by chicken cdc2 kinase facilitated DNA unwinding indicating that this posttranslational modification might be important for modulating this activity of RP-A. Finally, DNA unwinding of a primer recognition complex for DNA polymerase delta which is composed of proliferating cell nuclear antigen, replication factor C and ATP bound to a singly-primed M13DNA slightly inhibited DNA unwinding. An important role for DNA unwinding by RP-A in processes such as initiation of DNA replication, fork propagation, DNA repair and DNA recombination is discussed.  相似文献   

10.
Sizing of DNA fragments is a routine analysis traditionally performed on agarose or polyacrylamide gels. Electrophoretic analysis is labor-intensive with only limited potential for automation. Recovery of DNA fragments from gels is cumbersome. We present data on automated, size-based separation of DNA fragments by ion-pair reversed-phase high performance liquid chromatography (IP RP HPLC) - DNA chromatography - on the WAVE DNA Fragment Analysis System with the DNASep cartridge. This system is suitable for accurate and rapid sizing of double-stranded (ds) DNA fragments from 50 to ca. 2000 base pairs (bp). Fluorescently labeled DNA fragments are compatible with the technology. Length-dependent separation of dsDNA fragments is sequence independent and retention times are highly reproducible. The resolving capabilities of DNA chromatography are illustrated by the analysis of multiple DNA size markers. Resolved dsDNA fragments are easily collected and are suitable for downstream applications such as sequencing and cloning. DNA chromatography under denaturing conditions with fluorescently labeled DNA fragments offers a means for the separation and purification of individual strands of dsDNA. Analysis of DNA fragments on the WAVE System is highly automated and requires minimal manual intervention. DNA chromatography offers a reliable and automated alternative to gel electrophoresis for the analysis of DNA fragments.  相似文献   

11.
DNA topoisomerase activity detected in cell extracts of the trypanosomatid Crithidia fasciculata interlocks kinetoplast DNA duplex minicircles into huge catenane forms resembling the natural kinetoplast DNA networks found in trypanosomes. Catenation of duplex DNA circles is reversible and equilibrium is affected by ionic strength, and by spermidine. The reaction requires magnesium, is ATP dependent and is inhibited by high concentrations of novobiocin. Extensive homology between duplex DNA rings was not required for catenane formation since DNA circles with unrelated sequences could be interlocked into mixed network forms. Covalently sealed catenaned DNA circles are specifically used as substrates for decatenation. No such preference for covalently sealed duplex DNA rings was observed for catenate formation. Its catalytic properties and DNA substrate preference, suggest a potential role for this eukaryotic topoisomerase activity in the replication of kinetoplast DNA.  相似文献   

12.
We report here on a new sensitive and highly specific DNA staining technique which we have called sulpho-DNA staining. DNA staining is based on a sulphonylation reaction of 2'-deoxycytidine or cytidine that takes place in the 6th position of cytosine with ensuing immunodetection of the sulphonylated DNA. The specificity of DNA staining is introduced by the use of an antibody recognizing only modified DNA but not modified RNA, by recourse to an additional acid hydrolysis step which destroys RNA but not DNA. We describe here the optimal conditions for the sulphonylation of DNA using O-methylhydroxylamine and metabisulphite as reactants. The new DNA stain labels all nuclei in either normal human tissue or in tumor cells. For nuclear DNA the staining signal is higher for the sulpho-DNA staining than for the Feulgen staining for nuclear DNA. This new DNA staining technique is suitable for use on tissue sections as well as on cytosmears.  相似文献   

13.
Patrick SM  Tillison K  Horn JM 《Biochemistry》2008,47(38):10188-10196
Replication protein A (RPA) is a heterotrimeric protein that is required for DNA replication and most DNA repair pathways. RPA has previously been shown to play a role in recognizing and binding damaged DNA during nucleotide excision repair (NER). RPA has also been suggested to play a role in psoralen DNA interstrand cross-link (ICL) repair, but a clear biochemical activity has yet to be identified in the ICL DNA repair pathways. Using HeLa cell extracts and DNA affinity chromatography, we demonstrate that RPA is preferentially retained on a cisplatin interstrand cross-link (ICL) DNA column compared with undamaged DNA. The retention of RPA on cisplatin intrastrand and ICL containing DNA affinity columns is comparable. In vitro electrophoretic mobility shift assays (EMSAs) using synthetic DNA substrates and purified RPA demonstrate higher affinity for cisplatin ICL DNA binding compared with undamaged DNA. The enhanced binding of RPA to the cisplatin ICL is dependent on the DNA length. As the DNA flanking the cisplatin ICL is increased from 7 to 21 bases, preferential RPA binding is observed. Fluorescence anisotropy reveals greater than 200-fold higher affinity to a cisplatin ICL containing 42-mer DNA compared with an undamaged DNA and a 3-4-fold higher affinity when compared with a cisplatin intrastrand damaged DNA. As the DNA length and stringency of the binding reaction increase, greater preferential binding of RPA to cisplatin ICL DNA is observed. These data are consistent with a role for RPA in the initial recognition and initiation of cisplatin ICL DNA repair.  相似文献   

14.
Three Size-Classes of Intracellular Adenovirus Deoxyribonucleic Acid   总被引:18,自引:15,他引:3       下载免费PDF全文
When human adenovirus type 2 or 12 infects cells, either productively or non-productively, three classes of viral deoxyribonucleic acid (DNA) are found within the cells: (i) viral DNA which cosediments with DNA extracted from infectious adenovirions at 31.3S for adenovirus type 2 and at 29.0S for adenovirus type 12, (ii) viral DNA which sediments at about 18S, and (iii) viral DNA which sediments at >45S and is apparently integrated into the cellular DNA. A precursor-product relationship is suggested as a working hypothesis; the intact viral DNA is hydrolyzed to slowly sedimenting DNA and the slowly sedimenting DNA is integrated into the cellular DNA. Both the parental and the newly synthesized viral DNA are altered by this route. The intact viral DNA within the cells apparently is cleaved into the slowly sedimenting DNA by a preformed enzyme.  相似文献   

15.
RecA protein recognises two complementary DNA strands for homologous recombination. To gain insight into the molecular mechanism, the thermodynamic parameters of the DNA binding have been characterised by isothermal calorimetry. Specifically, conformational changes of protein and DNA were searched for by measuring variations in enthalpy change (DeltaH) with temperature (heat capacity change, DeltaC(p)). In the presence of the ATP analogue ATPgammaS, the DeltaH for the binding of the first DNA strand depends upon temperature (large DeltaC(p)) and the type of buffer, in a way that is consistent with the organisation of disordered parts and the protonation of RecA upon complex formation. In contrast, the binding of the second DNA strand occurs without any pronounced DeltaC(p), indicating the absence of further reorganisation of the RecA-DNA filament. In agreement with these findings, a significant change in the CD spectrum of RecA was observed only upon the binding of the first DNA strand. In the absence of nucleotide cofactor, the DeltaH of DNA binding is almost independent of temperature, indicating a requirement for ATP in the reorganisation of RecA. When the second DNA strand is complementary to the first, the DeltaH is larger than that for non-complementary DNA strand, but less than the DeltaH of the annealing of the complementary DNA without RecA. This small DeltaH could reflect a weak binding that may facilitate the dissociation of only partly complementary DNA and thus speed the search for complementary DNA. The DeltaH of binding DNA sequences displaying strong base-base stacking is small for both the first and second binding DNA strand, suggesting that the second is also stretched upon interaction with RecA. These results support the proposal that the RecA protein restructures DNA, preparing it for the recognition of a complementary second DNA strand, and that the recognition is due mainly to direct base-base contacts between DNA strands.  相似文献   

16.
Actinomycin D, known for its suppression of cellular RNA synthesis and for the reduction of the rate of synthesis of double-stranded DNA by the RNA tumor virus RNA-dependent DNA polymerase, was found to interact with single-stranded DNA in such a way as to inhibit DNA . DNA and DNA . RNA hybridizations. This finding is discussed in the light of the observation that DNA elongation during DNA synthesis of RNA tumor viruses is blocked in vitro in the presence of actinomycin D. It thus supports the model that hybridization is a necessary step during RNA tumor virus DNA synthesis.  相似文献   

17.
Microwave-field-driven acoustic modes in DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
The direct coupling of a microwave field to selected DNA molecules is demonstrated using standard dielectrometry. The absorption is resonant with a typical lifetime of 300 ps. Such a long lifetime is unexpected for DNA in aqueous solution at room temperature. Resonant absorption at fundamental and harmonic frequencies for both supercoiled circular and linear DNA agrees with an acoustic mode model. Our associated acoustic velocities for linear DNA are very close to the acoustic velocity of the longitudinal acoustic mode independently observed on DNA fibers using Brillouin spectroscopy. The difference in acoustic velocities for supercoiled circular and linear DNA is discussed in terms of solvent shielding of the nonbonded potentials in DNA.  相似文献   

18.
With the use of an in vitro complementation assay to measure activity, the gene 4 protein of bacteriophage T7 has been purified 1000-fold to yield a nearly homogeneous protein. The purified gene 4 protein is a single polypeptide having a molecular weight of 58,000. In addition to being essential for T7 DNA replication in vivo and in vitro, the gene 4 protein is required for DNA synthesis by the purified T7 DNA polymerase on duplex T7 DNA templates. In the absence of ribonucleoside 5'-triphosphates, DNA synthesis by the gene 4 protein and the T7 DNA polymerase is dependent on phosphodiester bond interruptions containing 3'-hydroxyl groups (nicks) in the duplex DNA. The reaction is specific for the T7 DNA polymerase, but any duplex DNA containing nicks can serve as template. The Km for nicks in the reaction is 3 x 10(-10) M.  相似文献   

19.
B Kaltenboeck  J W Spatafora  X Zhang  K G Kousoulas  M Blackwell  J Storz 《BioTechniques》1992,12(2):164, 166, 168-164, 166, 171
A modification of the asymmetric PCR method is described, which reliably facilitates sequencing of PCR-amplified DNA. This procedure produces single-stranded DNA fragments as long as two kilobases that are suitable for dideoxy DNA sequencing. First, a PCR for double-stranded DNA is preformed under optimal conditions (double-stranded PCR). Then, a 5-10-microliters fraction of the double-stranded PCR and a single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer are used to generate single-stranded DNA in a separate PCR (single-stranded PCR). The concentration of the single primer is approximately 0.4 microM. Usually 15 to 25 cycles of single-stranded PCR are optimal to produce single-stranded DNA for four to eight sequencing reactions. The single-stranded DNA is purified by centrifugal ultrafiltration and used directly in dideoxy sequencing. This method was employed to produce high-quality single-stranded DNA templates from a variety of organisms for efficient DNA sequencing of PCR-amplified DNA.  相似文献   

20.
A new method is described for detecting DNA double-strand breaks (DSBs) that utilizes asymmetric field inversion gel electrophoresis (AFIGE). DNA purified from cells in agarose plugs is subjected to AFIGE and DNA breakage quantitated by the fraction of DNA released from the plug. To test the specificity of the method for DNA DSBs, purified DNA in agarose plugs was treated for increasing times with restriction endonuclease, XhoI. After an initial time period, the fraction of DNA released increased in direct proportion to time. This correlates with the expected response for a randomly broken DNA molecule. In contrast, treatment with the single-strand breaking agent, hydrogen peroxide, over a 1000-fold range produced no release of DNA from the plug. Thus the assay appears to be specific for DNA DSBs and was used to measure DNA breaks induced by gamma radiation. Purified DNA, irradiated in agarose plugs, exhibited a log-linear dose response up to doses that release greater than 90% DNA from the plug. When live cells were irradiated in agarose, a similar linear dose response was observed up to 40 Gy and a significant signal as low as 2.5 Gy. Also in live cells, a threefold lower percentage of DNA was released from the plug over the same dose range. However, less DNA per gray is released at doses above 40 Gy and may reflect a crosslinking effect produced by the irradiation of DNA in live cells. DNA which was "pulse-labeled" was used to test the effect of DNA replication on the ability of AFIGE to detect DNA DSBs. Replicating DNA irradiated in the cell or after purification exhibited a reduced rate of release from the plug per dose of irradiation. Overall, the above results indicate that AFIGE is a sensitive method for detecting DSBs in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号