首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined whether adrenomedullin, a vasoactive peptide expressed in the heart, modulates the increase in blood pressure, changes in systolic and diastolic function, and left ventricular hypertrophy produced by long-term administration of ANG II or norepinephrine in rats. Subcutaneous administration of adrenomedullin (1.5 microg.kg(-1).h(-1)) for 1 wk inhibited the ANG II-induced (33.3 microg.kg(-1).h(-1) sc) increase in mean arterial pressure by 67% (P < 0.001) but had no effect of norepinephrine-induced (300 microg.kg(-1).h(-1) sc) hypertension. Adrenomedullin enhanced the ANG II-induced improvement in systolic function, resulting in a further 9% increase (P < 0.01) in the left ventricular ejection fraction and 19% increase (P < 0.05) in the left ventricular fractional shortening measured by echocardiography, meanwhile norepinephrine-induced changes in systolic function were remained unaffected. Adrenomedullin had no effect on ANG II- or norepinephrine-induced left ventricular hypertrophy or expression of hypertrophy-associated genes, including contractile protein and natriuretic peptide genes. The present study shows that adrenomedullin selectively suppressed the increase in blood pressure and augmented the improvement of systolic function induced by ANG II. Because adrenomedullin had no effects on ANG II- and norepinephrine-induced left ventricular hypertrophy, circulating adrenomedullin appears to act mainly as a regulator of vascular tone and cardiac function.  相似文献   

2.
Studies were performed to determine whether the central nervous system actions of corticotropin-releasing factor (CRF) and angiotensin II (ANG II) on systemic arterial pressure are mediated, in part, through changes in cardiac output (CO). Changes in CO after intracerebroventricular administration of ANG II and CRF were assessed in conscious unrestrained rats bearing pulsed Doppler flow probes on the ascending aorta. Intracerebroventricular injection of CRF (0.15 nmol) increased arterial pressure (15-20 mmHg), heart rate (70-100 beats/min), and CO (25-35%) without significantly affecting total peripheral resistance. Intracerebroventricular injection of ANG II (0.1 nmol) produced similar elevations of arterial pressure (15-20 mmHg). However, the ANG II-induced pressor response was attended by significant decreases in heart rate (20 beats/min) and CO (10-15%) and significant increases in total peripheral resistance (30-40%). The results of these studies demonstrate that CO, as assessed by pulsed Doppler flow probe methodology, may be influenced significantly and differentially by central nervous system administration of CRF and ANG II.  相似文献   

3.
The effects of intracerebroventricular administrations of three natural angiotensins, angiotensin I (ANG I 3.8 X 10-11-9.4 X10-10 mol/kg body weight), II (9.6 X 10-12-2.4 X 10-10 mol/kg body weight) and III (2.7 X 10-10 2.5 X 10-9 mol/kg body weight) on systemic blood pressure were investigated in conscious rats. Angiotensin II (ANG II), ANG I and angiotensin III (ANG III), increased blood pressure in a dose-related manner. The order of potency of angiotensins was ANG II greater than ANG I greater than ANG III. The intraventricular administration of a converting enzyme inhibitor (SQ 14225, 6.9 X10-8 mol/kg) abolished the central effect of ANG I, while an angiotensin II analogue ([Sar1-Ala8]ANG II, 1.1 X 10-8 mol/kg) administered intraventricularly inhibited the central pressor effects of these three angiotensins. These results suggest that ANG II is a main mediator of the renin-angiotensin system in the central nervous system.  相似文献   

4.
Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng x kg(-1) x min(-1) iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.  相似文献   

5.
Intravenous (iv) infusion of the angiotensin II (ANG II) receptor blocker saralasin in resting conscious dogs during physiological pertubations, such as hypotension and prolonged hypoxia, indicates the presence of an ANG II drive to increase respiration and decrease the arterial partial pressure of CO2 (PaCO2). In contrast, in eupneic resting dogs on a regular chow diet, iv infusion of saralasin for short periods (up to 30 min) provides no evidence of a tonic effect of circulating levels of ANG II on acid-base balance, respiration, metabolism, or circulation. However, ANG II influences physiological processes involving salt, water, and acid-base balances, which are potentially expressed beyond a 30 min time period, and could secondarily affect respiration. Therefore, we tested the hypothesis that blocking ANG II with iv saralasin would affect respiration and circulation over a 4-h period. Contrary to the hypothesis, iv infusion of saralasin in resting conscious eupneic dogs on a regular chow diet over a 4-h period had no effects on plasma strong ions, osmolality, acid-base balance, respiration, metabolism, or circulation when compared with similar control studies in the same animals. Thus, ANG II does not play a tonic modulatory role in respiratory control under "normal" physiological conditions.  相似文献   

6.
Renal effects of A II, retention of sodium and water, may be mediated by the stimulation of aldosterone secretion and/or by direct effects of A II on the kidneys. An attempt was made to differentiate between these two possibilities. Methods: Conscious, female beagle dogs were used. The dogs were kept under standardized conditions (metabolic cage, daily sodium intake 4.5 mmol X kg-1 bw, chronically implanted arterial and venous catheters, i.v. hormone substitution after adrenalectomy by a portable pump). A II was infused i.v. over a period of 60 min after 60 min control. (Rate: 1, 4, 20 or 200 ng X min-1 X kg-1 bw). Results: Mean arterial blood pressure (MABP) increased with 20 and 200 ng A II X min-1 X kg-1 bw by an average of 34 mm Hg and 65 mm Hg resp. before and after adrenalectomy. Before adrenalectomy: sodium and water excretion decreased always at 4 and 20 ng A II X min-1 X kg-1 bw, whereas a rate of 200 ng A II X min-1 X kg-1 bw had different effects on renal sodium and water excretion. After adrenalectomy: sodium and water excretion decreased at 4 ng A II X min-1 X kg-1 bw. Whereas a rate of 20 and 200 ng. -As no marked alterations of the glomerular filtration rate occurred, sodium retention observed was mainly due to tubular effects of A II. Plasma aldosterone concentration increased at 4, 20 and 200 ng A II X min-1 X kg-1 bw in the intact dogs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The hemodynamic effects of the combination of clonidine and propranolol were studied in conscious rats with portal hypertension owing to secondary biliary cirrhosis. Pressure and blood flow measurements (radioactive microsphere method) were performed in three groups of eight rats before and after drug administration. The combined effects of clonidine (2 micrograms/100 g body wt., i.v.) and propranolol (0.2 mg/min for 10 min) were compared with those observed after administration of either clonidine alone or propranolol alone. The association of clonidine and propranolol induced significant decreases in portal pressure (30%) and portal tributary blood flow (43%), the magnitude of these changes being significantly more marked than that after administration of either clonidine alone (12 and 20%, respectively) or propranolol alone (16 and 17%, respectively). After the combination, no significant change in arterial pressure was observed, but cardiac output significantly decreased and systemic vascular resistance significantly increased. Renal blood flow decreased to a similar extent (40%) in the three groups. These findings indicate that the combination of clonidine and propranolol is more effective for reversing splanchnic hemodynamic changes than clonidine alone or propranolol alone. The additive effects of this association are in agreement with the action of clonidine and propranolol at different levels (central and peripheral) and on different receptors (alpha and beta). It suggests that an increase in sympathetic activity may play a major role in hemodynamic changes observed in experimental cirrhosis.  相似文献   

8.
The effects of a 60-min intravenous infusion of angiotensin II (A II; 4 or 20 ng A II/min/kg body weight) on renal blood flow (RBF; electromagnetic flow transducer, control value 19-25 ml/min/kg), glomerular filtration rate (GFR; control value 4.2-5.0 ml/min/kg), mean arterial blood pressure, sodium excretion, water excretion, and plasma A II and plasma aldosterone concentrations were examined in 6 chronically instrumented female conscious beagle dogs kept on three different dietary sodium intakes (SI): SI 0.5 or SI 2.5 mmol Na/kg/day or SI 4.5 mmol Na/kg/day plus an oral saline load prior to the experiment SI 4.5(+) dogs. Four nanograms A II decreased RBF and GFR in SI 4.5(+) dogs without changing the filtration fraction (FF%); in SI 0.5 dogs the RBF decreased, and the FF% increased. Twenty nanograms A II decreased RBF and increased FF% in all dietary protocols, less in SI 4.5(+) dogs. The mean arterial blood pressure increased in all dietary protocols by 10-15 mm Hg (4 ng A II) and 32-37 mm Hg (20 ng A II). Sodium and water excretions decreased by 32 and 46%, respectively, in SI 4.5(+) dogs at both doses of A II. The plasma aldosterone concentration increased in all but one protocol: 4 ng A II, SI 4.5(+) dogs. It is concluded that when A II plasma concentrations are most likely borderline to pathophysiological conditions (up to an average of 370 pg/ml), the GFR is less decreased than the RBF. This phenomenon also can be observed at lower plasma A II concentrations (average 200 pg/ml), when the renin-angiotensin system had been previously moderately activated.  相似文献   

9.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

10.
Summary The effects of intracerebroventricular (icv) injections of angiotensin II (ANG II) on water intake, blood pressure, heart rate, and plasma arginine-vasopressin (AVP) concentration were studied in chronically instrumented adult male Syrian golden hamsters (Mesocricetus auratus). Furthermore, the effects of pharmacological ganglionic blockade, and of vascular AVP receptor blockade, on central ANG II-induced cardiovascular responses were investigated. ANG II (1, 10, and 100 ng, icv) elicited dose-dependent increases in water intake and arterial blood pressure. Heart rate showed a biphasic response with a short initial non dose-dependent tachycardic and a subsequent longer lasting bradycardic phase. Plasma AVP concentration was increased two and a half fold with 100 ng ANG II icv. Both ganglionic blockade and vascular AVP receptor blockade significantly attenuated the central ANG II-induced pressor response. The tachycardic phase of the heart rate response was abolished by ganglionic blockade and the bradycardic phase was significantly diminished by AVP receptor blockade. The results support the hypothesis that brain ANG II may participate in the central control of body fluid volume and in central cardiovascular regulation in conscious hamsters.  相似文献   

11.
The effects of naloxone and morphine on mean arterial blood pressure (MBP) and heart rate (HR) responses to angiotensin II (AII) were studied in conscious cynomolgus monkeys. Graded doses of AII (0.3, 1 and 3 micrograms/min for 8-10 min) were infused i.v. 20 min apart, preceded by an i.v. injection of either naloxone (1, 3 or 10 mg/kg), morphine (0.3, 1 or 3 mg/kg) or saline. Pretreatment with naloxone (10 mg/kg) attenuated the pressor response to AII (0.3 or 1 microgram/min) by 25-50% but did not alter similar pressor responses to phenylephrine. Pretreatment with morphine had little or no effect on MBP or HR responses to AII.  相似文献   

12.
Summary The effects of intracerebroventricular (icv) injections of 10 ng angiotensin II (ANG II) on mean arteriolar diameter and spontaneous arteriolar vasomotion were studied in subcutaneous tissue of conscious, restrained hamsters, using the skin fold window chamber preparation. Angiotensin II caused a significant decrease in mean arteriolar diameter which was associated with a significant elevation in the amplitude of vasomotion. The frequency of vasomotion did not change significantly. The central ANG II-induced effects on arteriolar vasomotion were not significantly altered by continuous intravenous (iv) infusion of hexamethonium (1 mg · kg–1 · min–1). In contrast, iv bolus injection of the vascular vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP (10 g · kg–1) 5 min prior to icv injection of ANG II significantly attenuated the effects of the neuropeptide on mean arteriolar diameter and the amplitude of vasomotion. These data indicate that central ANG II stimulation enhances arteriolar vasomotion in peripheral subcutaneous tissue of conscious hamsters and that this effect may be mediated by release of vasopressin.  相似文献   

13.
14.
Functional responses to angiotensin II(AT-II) were determined in aortic vascular smooth muscle cells (VSMCs) from experimental cirrhotic rats.Our data showed that AT-II-stimulated extracellular acidification rate (ECAR),which was measured by Cytosesor microphysiometry,was significantly reduced in the aortic VSMCs from the cirrhotic rats as compared to those from the control animals.The ability of AT-II to promote formation of inositol phosphates,the second messenger produced by the activation of Gq-coupled receptors,was also considerably suppressed in the cirrhotic VSMCs.Furthermore,the maximal p42/44 MAPK phosphorylation stimulated by AT-II was significantly reduced in the cirrhotic VSMCs in contrast to that in the normal VSMCs.Taken together,our data clearly demonstrated that the functional responses to AT-II was severely suppressed in aortic VSMCs in cirrhosis,indicating the impairment of general Gq-coupled receptor signaling and subsequent biological function in the cirrhotic VSMCs.  相似文献   

15.
Nitric oxide (NO) appears to inhibit sympathetic tone in anesthetized rats. However, whether NO tonically inhibits sympathetic outflow, or whether endogenous angiotensin II (ANG II) promotes NO-mediated sympathoinhibition in conscious rats is unknown. To address these questions, we determined the effects of NO synthase (NOS) inhibition on renal sympathetic nerve activity (RSNA) and heart rate (HR) in conscious, unrestrained rats on normal (NS), high-(HS), and low-sodium (LS) diets, in the presence and absence of an ANG II receptor antagonist (AIIRA). When arterial pressure was kept at baseline with intravenous hydralazine, NOS inhibition with l-NAME (10 mg/kg i.v.) resulted in a profound decline in RSNA, to 42 +/- 11% of control (P < 0.01), in NS animals. This effect was not sustained, and RSNA returned to control levels by 45 min postinfusion. l-NAME also caused bradycardia, from 432 +/- 23 to 372 +/- 11 beats/min postinfusion (P < 0.01), an effect, which, in contrast, was sustained 60 min postdrug. The effects of NOS inhibition on RSNA and HR did not differ between NS, HS, and LS rats. However, when LS and HS rats were pretreated with AIIRA, the initial decrease in RSNA after l-NAME infusion was absent in the LS rats, while the response in the HS group was unchanged by AIIRA. These findings indicate that, in contrast to our hypotheses, NOS activity provides a stimulatory input to RSNA in conscious rats, and that in LS animals, but not HS animals, this sympathoexcitatory effect of NO is dependent on the action of endogenous ANG II.  相似文献   

16.
These experiments investigated in the awake rat the involvement of noradrenergic projections to the rostral hypothalamus in the drinking and pressor responses elicited by intracerebroventricular (i.c.v.) injections of 25 ng of angiotensin II. Phentolamine mesylate in doses of 2.5-125 micrograms injected into the rostral hypothalamus produced a dose-dependent depression of both the drinking and pressor responses elicited by i.c.v. administration of angiotensin II. A paradoxical increase in heart rate was associated with a decrease in pressor responses with increasing doses of phentolamine. This response was due to tissue injections, since pretreatment by injecting 12.5 micrograms of phentolamine into the ventricle did not block either the cardiovascular or drinking responses to i.c.v. injections of angiotensin II. Yohimbine (0.33-3.3 micrograms), DL-propranolol (25 micrograms), and atenolol (25 micrograms) did not, but prazosin (0.7 microgram) did significantly alter the pressor responses. Although yohimbine also was without effect on drinking, prazosin reduced the drinking responses. These results suggest that alpha 1-adrenergic receptors in the rostral hypothalamus are involved in the control of both the drinking and pressor responses elicited by i.c.v. injections of angiotensin II. In the case of propranolol and atenolol, beta-adrenergic receptors altered only the drinking response in a nonspecific manner by eliciting competing behaviors. Whether they are involved in modifying the drinking response only remains to be demonstrated.  相似文献   

17.
We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant.  相似文献   

18.
19.
Our objectives were to investigate the extent to which angiotensin II (ANG II) and converting-enzyme inhibition (CEI) exert a direct vasoactive influence on the pulmonary circulation of conscious dogs. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by stepwise constriction of the thoracic inferior vena cava to reduce Q. The effects of ANG II infusion (60 ng X kg-1 X min-1, iv) and CEI with captopril (1 mg/kg plus 1 mg X kg-1 X h-1, iv) on pulmonary vascular P/Q plots were assessed first with the conscious dogs intact and again after combined administration of pharmacological antagonists to block sympathetic alpha- and beta-adrenergic, cholinergic, and arginine vasopressin receptors. In intact dogs, ANG II increased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure, PAP-PCWP) over the entire range of Q studied (60-120 ml X min-1 X kg-1). Conversely, CEI decreased (P less than 0.05) PAP-PCWP at each level of Q. After administration of the autonomic nervous system and arginine vasopressin receptor antagonists, ANG II again increased (P less than 0.01) and CEI decreased (P less than 0.01) PAP-PCWP over the entire range of Q studied. Thus exogenous administration of ANG II results in active, nonflow-dependent constriction of the pulmonary circulation, and this effect is not dependent on the autonomic nervous system or increased circulating levels of arginine vasopressin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A carotid infusion of angiotensin (AII) (10 ng/kg/min) has been found to increase significantly higher mean arterial pressure (MAP) and produces significantly lower bradycardia than AII intravenous infusions at the same dose and rate. Besides, i.v. administration of AII elicits greater impairment on baroreflex sensitivity than carotid infusion of AII does. On the other hand, vasopressin vascular receptor blockade did not modify the baroreflex sensitivity either in the carotid or in the i.v. infusions of AII, and plasma AVP measurements did not change significantly in any group. It clearly indicates that neither AVP nor baroreflex impairment plays any role on the pressor action of AII intracarotid infusions at a low dose. The present results further suggest that baroreflex impairment in rats may unlikely be located in the region irrigated by the carotid artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号