首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The adult hair follicle has well-defined dermal and epithelial populations that display distinct developmental properties. The follicular dermal cells, namely the dermal papilla and dermal sheath, are derived from the same mesenchymal cells as dermal fibroblasts and therefore, we believed that follicular cells could be useful sources of interfollicular keratinocytes and fibroblast for skin wound repair. In this study, we evaluated the relative effect of various mesenchymal-derived cells on wound healing following skin injury. Human dermal cells, including two different follicular dermal cells and skin fibroblasts were cultured in collagen sponges and compared with respect to wound healing. Results indicated that there was no significant difference in wound contraction and angiogenesis among the cell types. Further, dermal sheath cells exhibited relatively poor results compared with other cells in new collagen synthesis. Finally, basement membrane reformation and new collagen synthesis for the dermal papilla cell grafts was superior to those of the dermal sheath cells or fibroblasts.  相似文献   

2.
Burn scar contracture that follows the healing of deep dermal burns causes severe deformation and functional impairment. However, its current therapeutic interventions are limited with unsatisfactory outcomes. When we treated deep second-degree burns in rat skin with activin-like kinase 5 (ALK5) inhibitor A-83-01, it reduced wound contraction and enhanced the area of re-epithelialization so that the overall time for wound closing was not altered. In addition, it reduced myofibroblast population in the dermis of burn scar with a diminished deposition of its biomarker proteins such as α-SMA and collagen. Treatment of rat dermal fibroblast with A-83-01 inhibited transforming growth factor-β1 (TGF-β1)-dependent induction of α-SMA and collagen type I. Taken together, these results suggest that topical application of ALK5 inhibitor A-83-01 could be effective in preventing the contraction of burn wound without delaying the wound closure by virtue of its inhibitory activity against the TGF-β-induced increase of myofibroblast population.  相似文献   

3.
Adipose-derived stem cells (ADSCs) are multipotent stromal cells that can differentiate into a variety of cell types, including skin cells, and they can provide an abundant source of cells for skin tissue engineering and skin wound healing. The purpose of this study is to explore the therapeutic effects of activin B in combination with ADSCs and the possible signaling mechanism. In this study, we found that activin B was able to promote ADSC migration by inducing actin stress fiber formation in vitro. In vivo, activin B in combination with ADSCs was capable of enhancing α-SMA expression and wound closure. This combined treatment also promoted fibroblast and keratinocyte proliferation and accelerated re-epithelialization and collagen deposition. Moreover, activin B in combination with ADSCs boosted angiogenesis in the wound area. Further study of the mechanism revealed that activation of JNK and ERK signaling, but not p38 signaling, were required for activin B-induced ADSC actin stress fiber formation and cell migration. These results showed that activin B was able to activate JNK and ERK signaling pathways to induce actin stress fiber formation and ADSC migration to promote wound healing. These results suggest that combined treatment with activin B and ADSCs is a promising therapeutic strategy for the management of serious skin wounds.  相似文献   

4.
The skin plays an important role in defending the body against the environment. Treatments for burns and skin injuries that use autologous or allogenic skin grafts derived from adult or embryonic stem cells are promising. Embryonic stem cells are candidates for regenerative and reparative medicine. We investigated the utility of keratinocyte-like cells, which are differentiated from mouse embryonic stem cells, for wound healing using a mouse surgical wound model. Mice were allocated to the following groups: experimental, in which dressing and differentiated cells were applied after the surgical wound was created; control, in which only the surgical wound was created; sham, in which only the dressing was applied after the surgical wound was created; and untreated animal controls with healthy skin. Biopsies were taken from each group on days 3, 5 and 7 after cell transfer. Samples were fixed in formalin, then stained with Masson’s trichrome and primary antibodies to interleukin-8 (IL-8), fibroblast growth factor-2 (FGF-2), monocyte chemoattractant protein-1 (MCP-1), collagen-1 and epidermal growth factor (EGF) using the indirect immunoperoxidase technique for light microscopy. Wound healing was faster in the experimental group compared to the sham and control groups. The experimental group exhibited increased expression of IL-8, FGF-2 and MCP-1 during early stages of wound healing (inflammation) and collagen-1 and EGF expression during late stages of wound healing (proliferation and remodeling). Keratinocytes derived from embryonic stem cells improved wound healing and influenced the wound healing stages.  相似文献   

5.
Chronically elevated blood glucose levels result in reduced leukocyte function and cell malnutrition, which contribute to a high rate of wound infection and associated healing problems in diabetic patients. In the present study, the role of biotinylated GHK peptide (BioGHK) incorporated collagen biomaterial was tested for wound healing in diabetic rats. The rate of wound contraction and the levels of collagen, uronic acid, protein and DNA in the granulation tissue were determined. Further, the concentration of nitric oxide and other skin antioxidants was also monitored during the study. In diabetic rats treated with BioGHK incorporated collagen (Peptide Incorporated Collagen--PIC), the healing process was hastened with an increased rate of wound contraction. Glutathione (GSH) and ascorbic acid levels in the skin of streptozotocin-induced diabetic rats were higher in the PIC group as compared to control (Untreated) and collagen (Collagen Film--CF) treated groups. Superoxide dismutase (SOD) and catalase (CAT) activity was altered in all the groups. In vitro fibroblast cell culture studies suggest that PIC promotes fibroblast growth. Histological evaluation by haematoxylin-eosin and Masson's trichrome method revealed epithelialization, increased synthesis of collagen and activation of fibroblasts and mast cells in the PIC group. This study provides a rationale for the topical application of BioGHK incorporated collagen as a feasible and productive approach to support diabetic wound healing.  相似文献   

6.
An in vivo comparison of topical agents on wound repair.   总被引:2,自引:0,他引:2  
Selection of the ideal antiseptic or antimicrobial treatment for contaminated wounds remains a controversial decision. Clinical decisions are often made on the basis of in vitro studies and personal preference. Although topical solutions are widely used, their comparative in vivo effects on wound healing are largely unreported.A porcine wound model was used to compare five commonly used topical agents-5% mafenide acetate (Sulfamylon solution), 10% povidone with 1% free iodine (Betadine), 0.25% sodium hypochlorite ("half-strength" Dakin), 3% hydrogen peroxide, and 0.25% acetic acid-with a control group. Reepithelialization, angiogenesis, neodermal regeneration, fibroblast proliferation, collagen production, and bacterial colony counts were analyzed at 4 and 7 days after wounding (n = 4).Reepithelialization was not significantly influenced among the various treatment modalities tested. Sulfamylon and Dakin solutions significantly increased neodermal thickness (p < 0.05), whereas hydrogen peroxide and acetic acid significantly inhibited neodermal formation (p < 0.001). All treatments except hydrogen peroxide significantly increased fibroblast proliferation. Sulfamylon and Betadine significantly enhanced angiogenesis (p < 0.05). Sulfamylon proved most effective in maintaining an aseptic environment while concomitantly increasing angiogenesis, fibroblast proliferation, and dermal thickness compared with control.These data show that selection of a particular topical treatment can affect various aspects of wound repair in an animal model. These results suggest that the selection of topical treatments in the clinical setting should be carefully tailored to match unique wound situations and therapeutic endpoints.  相似文献   

7.
Extracts or supernatants from cultures of Lactobacilli are used for their medicinal effects, including wound healing and immune system stimulating activity. We have studied the in vivo and in vitro effects of supernatants from bacterial cultures of two strains of Lactobacillus (LS) on tissue repair and angiogenesis. Subcutaneous injection of LS into rodent ears led to proliferation of blood vessels that also exhibited strong immunostaining for Flk-1 receptor. Some inflammatory cells were scattered among the blood vessels. The continuous influx of polymorphonuclear leukocytes (PMNs) and macrophages into transcutaneous wounds in mice treated with LS resulted in prolonged inflammatory phase of wound healing and delayed wound closure, including reepithelialization. Subcutaneous injection of Matrigel impregnated with LS into the abdominal wall led to rapid and transient influx of PMNs in the vicinity of the gel. LS stimulated the proliferation of murine macrophage J774.A1 cell line and porcine lymphocytes but not that of murine fibroblast AKR-2B cells. LS also induced production of TNF-alpha by J774.A1 cells and by porcine kidney epithelial LLC-PK1 cells. LS did not appear to have an effect on collagen production. In conclusion, our study demonstrates the potential of LS to function as a stimulator of the inflammatory stage of tissue repair, TNF-alpha production, and of angiogenesis.  相似文献   

8.
Effects of topical application of Bis[benzyl N'-(indol-3-ylmethylene)-hydrazinecarbodithioato]-zinc(II) (BHCZ) on wound healing and histology of healed wound were assessed. Sprague Dawley rats were experimentally induced wound in the posterior neck area. Tween 20 (0.2 ml of 10%) was applied to rats in Group 1 (negative control). Intrasite gel (0.2 ml) was applied topically to rats in Group 2 as reference. BHCZ at the concentrations 0.2 ml of 25, 50 and 100 mg/ml were applied to Group 3, 4 and 5, respectively. Wound dressed with BHCZ significantly healed earlier than those treated with 10% Tween 20. Also wound dressed with 100 mg/ml BHCZ accelerated the rate of wound healing compared to those dressed with intrasite gel and, 25 mg/ml and 50 mg/ml BHCZ. Histological analysis of healed wound with BHCZ showed comparatively less scar width at wound enclosure and the healed wound contained less macrophages and large amount of collagen with angiogenesis compared to wounds dressed with 10% Tween 20. Results of this study showed that wounds dressed with 100 mg/ml of BHCZ significantly enhanced acceleration of the rate of wound healing enclosure, and histology of healed wounds showed comparatively less macrophages and more collagen with angiogenesis.  相似文献   

9.
Lumican is a dermatan sulfate proteoglycan highly expressed in connective tissue and has the ability to regulate collagen fibril assembly. Previous studies have shown that lumican is involved in wound healing, but the precise effects of lumican on reepithelialization and wound contraction, the two pivotal aspects of skin wound healing, have not been investigated. Here we explored the roles of lumican in fibroblast contractility, a main aspect of skin wound healing, by adopting mice skin wound healing model and the corresponding in vitro cellular experiments. Our results showed that lumican can promote skin wound healing by facilitating wound fibroblast activation and contraction but not by promoting keratinocyte proliferation and migration. Silencing of integrin α2 completely abolished the pro-contractility of lumican, indicating lumican enhances fibroblast contractility via integrin α2. Our study for the first time demonstrated that lumican can affect fibroblast’s mechanical property, which is pivotal for many important pathological processes, such as wound healing, fibrosis, and tumor development, suggesting that lumican might have a potential to be used to modulate these processes.  相似文献   

10.
We examined the effects of the transparent fibroin film (silk film) on full-thickness skin wounds. Full-thickness dermatotomies (15 mm x 9 mm) were prepared on the dorsal wall of CRJ:CD-1 nu/nu (ICR nu/nu) mice. The area of the wounds dressed with silk film was reduced to 10% of that made by the dermatotomy 14 days after the dermatotomy and were covered with regenerated epidermis 21 days after the dermatotomy. In contrast, less recovery and epidermal regeneration were found 14 days after dermatotomy in the wounds dressed with a conventional hydrocolloid dressing (Duro Active). Furthermore, only partial incomplete epidemal growth was obtained 21 days after dermatotomy. Most importantly, the healing time of wounds dressed with silk film was 7 days shorter than those dressed with DuoActive dressing. The silk film showed an almost similar or slightly better promotive effect as the lyophilized porcine dermis (Alloask D), which is used as a dressing for burns, ulcers, and decubitis. Histologic findings revealed that there was greater collagen regeneration and less inflammation and neutrophil-lymphocyte infiltration of the wounds dressed with silk film than with DuoActive dressing. It is clear that regeneration of the epidermis and dermis of the wound beds covered with silk film was faster than with DuoActive dressing. Finally, silk film is easily obtainable, sterilizable, and transparent, and it allows easy observation of tissue recovery. Therefore, silk film offers advantages over other dressings and may be clinically useful for wound treatment.  相似文献   

11.
The function of the endogenous angiogenesis inhibitor thrombospondin-1 (TSP-1) in tissue repair has remained controversial. We established transgenic mice with targeted overexpression of TSP-1 in the skin, using a keratin 14 expression cassette. TSP-1 transgenic mice were healthy and fertile, and did not show any major abnormalities of normal skin vascularity, cutaneous vascular architecture, or microvascular permeability. However, healing of full-thickness skin wounds was greatly delayed in TSP-1 transgenic mice and was associated with reduced granulation tissue formation and highly diminished wound angiogenesis. Moreover, TSP-1 potently inhibited fibroblast migration in vivo and in vitro. These findings demonstrate that TSP-1 preferentially interfered with wound healing-associated angiogenesis, rather than with the angiogenesis associated with normal development and skin homeostasis, and suggest that therapeutic application of angiogenesis inhibitors might potentially be associated with impaired wound vascularization and tissue repair.  相似文献   

12.
Intriguingly, microRNAs (miRs) transferred as cargo in extracellular vesicles (EVs) can modulate wound healing through their regulation of fibroblast functions. In this study, we investigated the effects of miR-106b transfer via EVs derived from human umbilical vein endothelial cells (HUVECs) on skin wound healing. Dual-luciferase reporter gene assay identified that miR-106b could target and inhibit JMJD3. RT-qPCR analysis showed EVs isolated from HUVECs had enriched expression of miR-106b. LL29 fibroblast cells and HaCaT keratinocytes were co-cultured with HUVEC-derived EVs, in which miR-106b had been up-regulated or down-regulated by its mimic or inhibitor. The co-culture with HUVEC-derived EVs increased miR-106b expression, and reduced the viability and adhesion of LL29 and HaCaT cells, whereas the inhibition of miR-106b in HUVEC-derived EVs enhanced the viability and adhesion of LL29 and HaCaT cells through up-regulation of JMJD3. Next, we showed that JMJD3 overexpression enhanced LL29 and HaCaT cell viability and adhesion through elevating RIPK3, which induced the phosphorylation of AKT during the wound-healing process. We next developed a mouse skin wound model to investigate the actions of miR-106b in vivo after 14 days. The delivery of miR-106b via HUVEC-derived EVs delayed wound healing through suppression of collagen I content and angiogenesis, but had no effects on pro-inflammatory cytokines. In conclusion, miR-106b from HUVEC-derived EVs inhibits JMJD3 and RIPK3, leading to the inhibition of skin wound healing, thus constituting a new therapeutic target.  相似文献   

13.
Effect of sodium diphenylhydantoin on skin wound healing in rats   总被引:2,自引:0,他引:2  
This study evaluated the effect of phenytoin (sodium diphenylhydantoin) on skin wound healing in a rat model. The study was divided into two parts. In part I, 20 mul of phenytoin (10 mg/ml) was subcutaneously injected into the 3-cm dorsal full-thickness incisional wounds of 14 rats on postoperative days 0, 3, and 6. Twelve rats that received saline injections were used as the controls. The skin samples were harvested and tested for tensile strength and histology. An additional 12 rats with the same incisional wounds were tested for chemokine gene expressions. In part II, 20 mul of phenytoin (10 mg/ml) was applied topically once a day on a 4 x 4 cm area of the open dorsal wounds of 10 rats. Saline was applied to the wounds of the 10 control group rats. The wounds were measured weekly. The results showed that the average tensile strength of the phenytoin-treated wound was 0.49 +/- 0.08 MPa compared with the control group at 0.02 +/- 0.01 MPa (p < 0.05). The density ratio of chemokine monocyte chemotactic protein (MCP-1) to beta-actin in the phenytoin-treated group was also significantly higher than in the control group (p < 0.05). Histologic analysis of the phenytoin group showed a large amount of fibroblast proliferation, collagen synthesis, and neovascularization. Phenytoin-treated wounds were also smaller at 1 to 6 weeks postoperatively than the control group wounds. The authors conclude that the administration of phenytoin can promote wound healing and significantly increase MCP-1 expression. Phenytoin-treated wounds showed significant increase in collagen deposition and neovascularization, which resulted in an increased wound tensile strength and accelerated healing of both open and closed wounds.  相似文献   

14.
ObjectivesHistatin 1(Hst 1) has been proved to promote wound healing. However, there was no specific study on the regulation made by Hst 1 of fibroblasts in the process of wound healing. This research comprehensively studied the regulation of Hst 1 on the function of fibroblasts in the process of wound healing and preliminary mechanism about it.Materials and methodsThe full‐thickness skin wound model was made on the back of C57/BL6 mice. The wound healing, collagen deposition and fibroblast distribution were detected on days 3, 5 and 7 after injury. Fibroblast was cultured in vitro and stimulated with Hst 1, and then, their biological characteristics and functions were detected.ResultsHistatin 1 can effectively promote wound healing, improve collagen deposition during and after healing and increase the number and function of fibroblasts. After healing, the mechanical properties of the skin also improved. In vitro, the migration ability of fibroblasts stimulated by Hst 1 was significantly improved, and the fibroblasts transformed more into myofibroblasts, which improved the function of contraction and collagen secretion. In fibroblasts, mTOR signalling pathway can be activated by Hst 1.ConclusionsHistatin 1 can accelerate wound healing and improve the mechanical properties of healed skin by promoting the function of fibroblasts. The intermolecular mechanisms need to be further studied, and this study provides a direction about mTOR signalling pathway.  相似文献   

15.
Wang W  Lin S  Xiao Y  Huang Y  Tan Y  Cai L  Li X 《Life sciences》2008,82(3-4):190-204
In order to develop a better wound-dressing to enhance diabetic wound healing, we have examined the biochemical and biophysical features of chitosan-crosslinked collagen sponge (CCCS) and pre-clinically evaluated the CCCS containing recombinant human acidic fibroblast growth factor (CCCS/FGF) in accelerating diabetic wound healing as compared to collagen sponge alone and FGF alone. Collagen crosslinked with chitosan showed several advantages required for wound dressing, including the uniform and porous ultrastructure, less water-imbibition, small interval porosity, high resistance to collagenase digestion and slow release of FGF from CCCS/FGF. Therapeutic effect of the new wound-dressing containing FGF (i.e.: CCCS/FGF) on diabetic wound healing was examined in type 1 diabetic rat model in which hyperglycemia was induced by single dose of streptozotocin (STZ) and persisted for two months. The CCCS/FGF provided the most efficiently therapeutic effect among various treatments, showing the shortest healing time (14 days in the CCCS/FGF-treated group as compared to 18~21 days in other treatment groups), the quickest tissue collagen generation, the earliest and highest TGF-beta1 expression and dermal cell proliferation (PCNA expression). All these results suggest that CCCS/FGF is an ideal wound-dressing to improve the recovery of healing-impaired wound such as diabetic skin wound, which provides a great potential use in clinics for diabetic patients in the future.  相似文献   

16.
O Xiao  ZL Xie  BW Lin  XF Yin  RB Pi  SY Zhou 《PloS one》2012,7(7):e41858
The purpose of this study was to investigate the effects of minocycline on alkali burn-induced corneal neovascularization (CNV). A total of 105 mice treated with alkali burns were randomly divided into three groups to receive intraperitoneal injections of either phosphate buffered saline (PBS) or minocycline twice a day (60 mg/kg or 30 mg/kg) for 14 consecutive days. The area of CNV and corneal epithelial defects was measured on day 4, 7, 10, and14 after alkali burns. On day 14, a histopathological examination was performed to assess morphological change and the infiltration of polymorphonuclear neutrophils (PMNs). The mRNA expression levels of vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), basic fibroblast growth factor (bFGF), matrix metalloproteinases (MMPs), interleukin-1α, 1β, 6 (IL-1α, IL-1β, IL-6) were analyzed using real-time quantitative polymerase chain reaction. The expression of MMP-2 and MMP-9 proteins was determined by gelatin zymography. In addition, enzyme-linked immunosorbent assay was used to analyze the protein levels of VEGFR1, VEGFR2, IL-1β and IL-6. Minocycline at a dose of 60 mg/kg or 30 mg/kg significantly enhanced the recovery of the corneal epithelial defects more than PBS did. There were significant decreases of corneal neovascularization in the group of high-dosage minocycline compared with the control group at all checkpoints. On day 14, the infiltrated PMNs was reduced, and the mRNA expression of VEGFR1, VEGFR2, bFGF, IL-1β, IL-6, MMP-2, MMP-9, -13 as well as the protein expression of VEGFR2, MMP-2, -9, IL-1β, IL-6 in the corneas were down-regulated with the use of 60 mg/kg minocycline twice a day. Our results showed that the intraperitoneal injection of minocycline (60 mg/kg b.i.d.) can significantly inhibit alkali burn-induced corneal neovascularization in mice, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors, inflammatory cytokines and MMPs.  相似文献   

17.
The objective of this work was initially to investigate the effects on skin wound healing process by local injection of HSP47 recombinant plasmid in an alloxan-induced diabetic rat model and assess the possibility and utility of gene therapy based on HSP47 plasmid to improve the diabetic skin wound healing. Rats were injected intraperitoneally with alloxan (120 mg/kg) to induce diabetes. The fragment containing the rat 47 kDa heat shock protein (HSP47) gene lacking its own promoter was cloned into plasmids containing a promoter and green fluorescent protein (GFP). The resulting gene constructs were first tested in vitro using 3T3 fibroblast cell line and subsequently in vivo after inducing wounds with alloxan in diabetic rats. Immunohistochemistry, quantitative fluorescent RT-PCR, and Western blotting 3-5 days after plasmid injection were performed to measure the expression changes of HSP47 and collagen I. The results demonstrate an increase of HSP47 levels in vitro in 3T3 fibroblast cells and in vivo in diabetic rat after treatment with plasmids expressing HSP47. The level of collagen I around the wound during the repair process was higher in the treated group than that in the control group, indicating that the constructs may have use in human gene therapy in cases of impaired skin wound healing in diabetes.  相似文献   

18.
Dermal substitutes can be used to improve the wound healing of deep burns when placed underneath expanded, thin autologous skin grafts. Such dermal matrix material can be derived from xenogeneic or human tissue. Antigenic structures, such as cells and hairs must be removed to avoid adverse inflammatory response after implantation. In this study, a cost-effective method using low concentrations of NaOH for the de-cellularization of human donor skin preserved in 85% glycerol is described. The donor skin was incubated into NaOH for different time periods; 2, 4, 6 or 8 weeks. These dermal matrix prototypes were analyzed using standard histology techniques. Functional tests were performed in a rat subcutaneous implant model and in a porcine transplantation model; the prototypes were placed in full thickness excision wounds covered with autologous skin grafts. An incubation period of 6 weeks was most optimal, longer periods caused damage to the collagen fibers. Elastin fibers were well preserved. All prototypes showed intact biocompatibility in the rat model by the presence of ingrowing blood vessels and fibroblasts at 4 weeks after implantation. An inflammatory response was observed in the prototypes that were treated for only 2 or 4 weeks with NaOH. The prototypes treated with 6 or 8 weeks NaOH were capable to reduce wound contraction in the porcine model. In neo-dermis of these wounds, elastin fibers derived from the prototype could be observed at 8 weeks after operation, surrounded by more random orientated collagen fibers. Thus, using this effective low cost method, a dermal matrix can be obtained from human donor skin. Further clinical studies will be performed to test this material for dermal substitution in deep (burn) wounds.  相似文献   

19.
Alteration of the radiation-induced changes in wound contraction, collagen synthesis and wound histology by ascorbic acid was studied in mice exposed to 10, 16 and 20 Gy of fractionated (2 Gy/fraction) gamma radiation. The animals were given double-distilled water or ascorbic acid daily before exposure to 2 Gy/day of fractionated irradiation. A full-thickness skin wound was created on the dorsum of the irradiated mice, and the progression of wound contraction and collagen synthesis were examined and histological evaluations were carried out at various times after wounding. Irradiation caused a dose-dependent delay in wound contraction, and pretreatment with ascorbic acid resulted in a significant increase in wound contraction. The greatest increase in wound contraction was observed 6 and 9 days after wounding in both groups. Pretreatment with ascorbic acid augmented the synthesis of collagen significantly as revealed by an increase in hydroxyproline content. The collagen deposition and fibroblast and vasculature densities declined in a dose-dependent manner in groups receiving radiation alone as indicated by histological evaluation. Pretreatment with ascorbic acid ameliorated the observed effect significantly. These studies demonstrate that pretreatment with ascorbic acid resulted in a significant reduction of radiation-induced delay in wound healing as shown by earlier wound closure and increased collagen content and fibroblast and vascular densities.  相似文献   

20.
Cutaneous wound continues to cause significant morbidity and mortality in the setting of diseases such as diabetes and cardiovascular diseases. Despite advances in wound care management, there is still an unmet medical need exists for efficient therapy for cutaneous wound. Combined treatment of adrenomedullin (AM) and its binding protein-1 (AMBP-1) is protective in various disease conditions. To examine the effect of the combination treatment of AM and AMBP-1 on cutaneous wound healing, full-thickness 2.0-cm diameter circular excision wounds were surgically created on the dorsum of rats, saline (vehicle) or AM/AMBP-1 (96/320 μg kg BW) was topically applied to the wound daily and wound size measured. At days 3, 7, and 14, skin samples were collected from the wound sites. AM/AMBP-1 treated group had significantly smaller wound surface area than the vehicle group over the 14-day time course. At day 3, AM/AMBP-1 promoted neutrophil infiltration (MPO), increased cytokine levels (IL-6 and TNF-α), angiogenesis (CD31, VEGF and TGFβ-1) and cell proliferation (Ki67). By day 7 and 14, AM/AMBP-1 treatment decreased MPO, followed by a rapid resolution of inflammation characterized by a decrease in cytokines. At the matured stage, AM/AMBP-1 treatment increased the alpha smooth muscle actin expression (mature blood vessels) and Masson-Trichrome staining (collagen deposition) along the granulation area, and increased MMP-9 and decreased MMP-2 mRNA expressions. TGFβ-1 mRNA levels in AM/AMBP-1 group were 5.3 times lower than those in the vehicle group. AM/AMBP-1 accelerated wound healing by promoting angiogenesis, collagen deposition and remodeling. Treatment also shortened the days to reach plateau for wound closure. Thus, AM/AMBP-1 may be further developed as a therapeutic for cutaneous wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号