首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of bioactive compounds and commercialization of marine microalgae sources are interesting targets in future marine biotechnology. Cultured biomass of the marine microalga, Nannochloropsis oculata, was used to purify angiotensin-I converting enzyme (ACE) inhibitory peptides using proteases including pepsin, trypsin, α-chymotrypsin, papain, alcalase, and neutrase. The pepsin hydrolysate exhibited the highest ACE inhibitory activity, compared to the other hydrolysates and then was separated into three fractions (F1, F2, and F3) using Sephadex G-25 gel filtration column chromatography. First fraction (F1) showed the highest ACE inhibitory activity and it was further purified into two fractions (F1-1 and F1-2) using reverse-phase high-performance liquid chromatography. The IC50 value of purified ACE inhibitory peptides were 123 and 173 μM and identified as novel peptides, Gly-Met-Asn-Asn-Leu-Thr-Pro (GMNNLTP; MW, 728 Da) and Leu-Glu-Gln (LEQ; MW, 369 Da), respectively. In addition, nitric oxide production level (%) was significantly increased by the purified peptide (Gly-Met-Asn-Asn-Leu-Thr-Pro) compared to the purified peptide (Leu-Glu-Gln) and other treated pepsin hydrolysate fractions on human umbilical vein endothelial cells (HUVECs). Cell viability assay showed no cytotoxicity on HUVECs with the treated purified peptides and fractions. These results suggest that the isolated peptides from cultured marine microalga, N. oculata protein sources may have potentiality to use commercially as ACE inhibitory agents in functional food industry.  相似文献   

2.
The hypertension is one of the highest risk factors for stroke, myocardial infarction, vascular disease and chronic kidney disease. Angiotensin converting enzyme (ACE) has an important role in the physiological regulation of cardiovascular system. ACE inhibition is a key purpose for hypertension treatment. In this study, two peptides named HL-7 with the sequence of YLYELAR (MW: 927.07 Da) and HL-10 with the sequence of AFPYYGHHLG (MW: 1161.28 Da) were identified from scorpion venom of H. lepturus. The inhibitory activity of HL-7 and HL-10 was examined on rabbit ACE. The inhibition mechanisms were assayed by kinetic and docking studies. The IC50 values for ACE inhibition of HL-7 and HL-10 were 9.37 µM and 17.22 µM, respectively. Lineweaver-Burk plots showed that two peptides inhibited rabbit ACE with competitive manner. The molecular docking conformed experimental results and showed that the two peptides interacted with N-domain and C-domain active sites. Also, docking study revealed that the two peptides can form hydrogen and hydrophobic bonds at their binding sites. Both peptides had higher affinity to N-domain. Our results showed that HL-7 exhibited more strong interactions with amino acids at active site. It seems that HL-10 peptide could occupy more space, thereby inhibiting the substrate entrance to active site.  相似文献   

3.
Angiotensin I-converting enzyme (ACE, EC.3.4.15.1) inhibitory peptide is an efficacious therapy for hypertension. In this study, four dipeptides, TY, FD, FL and FG, were identified from the desalted fraction of bovine hemoglobin hydrolysate, obtained by in vitro simulated gastrointestinal digestion, via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The IC50 value of TY and FL are 96.43?±?6.17 and 290.66?±?57.92 μM, respectively. The result of molecular docking indicated that TY occupied the ACE subsite S1 and S1′ with a lowest estimated binding energy of ?9.96 Kcal/mol, while FL occupied the subsite S5 with a lowest estimated binding energy of ?9.37 Kcal/mol. The subsite S1′ and S2′ are closer to the ACE active center (Zn2+) than S5, and the lowest estimated binding energy of TY is lower than that of FL. This work provided new ACE-inhibitory peptides derived from bovine hemoglobin hydrolysate and explained their inhibitory mechanism.  相似文献   

4.
Soy protein is widely used as a nitrogen source in infant and adult formulations, both in an intact and hydrolyzed form. Here, the objective was to screen for maximum proteolytic activity in different strains of lactobacillus and use it for fermentation of soy protein to obtain Angiotensin converting-I-enzyme (ACE I) inhibitory peptides for its use as a nutraceutical. Based on the proteolytic activity, Lactobacillus casei spp. pseudoplantarum was selected. The two ACE inhibitory peptide fractions F2 and F3 were isolated having IC50 values of 17 ± 0.63 and 30 ± 0.13 μg/ml respectively. The N-terminal sequence of peptide (F2) was determined to be Leu-Ile-Val-Thr-Gln (LIVTQ). The peptide analogues of LIVTQ were synthesized to study the effect of individual residues on ACE enzyme. LIVTQ and LIVT peptides show inhibition against ACE enzyme having an IC50 value of 0.087 and 0.110 μM respectively. Our results depict that glutamine (Q) and threonine (T) residues have an important role in ACE inhibition.  相似文献   

5.
According to relevant literature, the consumption of seahorses has been used to increase male functions by improving blood flow and decreasing blood pressure. Thus, it was theorized that seahorses may also be effective against hypertension. Herein, vasodilation caused via the inhibitory effect of angiotensin-converting enzymes (ACEs) in peptides was elucidated by studying the seahorses (Hippocampus abdominalis) farmed at Jeju in South Korea. Hydrolysate was prepared using the Protamex (SHP) enzyme. The ultrafiltration system was adopted to separate certain fractions from SHP according to different molecular weights (SHP-I, MW > 10 kDa; SHP-II, MW = 5−10 kDa; SHP-III, MW < 5 kDa). The fraction with the lowest molecular weight (SHP-III) and with a low IC50 value (0.044 ± 0.005) for the ACE inhibitory effect was further separated by Sephadex G-10. Three ACE inhibitory peptides from SHP-III were isolated and identified using the Q-TOF mass spectrometer (Ala-Pro-Thr-Leu, Cys-Asn-Val-Pro-Leu-Ser-Pro, and Pro-Trp-Thr-Pro-Leu). Furthermore, SHP-III-induced systolic blood pressure varied with the concentrations, as observed in the spontaneously hypertensive rat (SHR). SHP and the isolated peptides were observed to show vasodilation via ACE inhibitions and resulted in lowering the blood pressure of the SHR. These results imply that peptides from seahorses can augment male functions.  相似文献   

6.
Gu  Yuxiang  Li  Xing  Qi  Xiaofen  Ma  Ying  Chan  Eric Chun Yong 《Amino acids》2023,55(2):161-171

The capacity of buffalo milk proteins to release bioactive peptides was evaluated and novel bioactive peptides were identified. The sequential similarity between buffalo milk proteins and their cow counterparts was analysed. Buffalo milk proteins were simulated to yield theoretical peptides via in silico proteolysis. The potential of selected proteins to release specific bioactive peptides was evaluated by the A value obtained from the BIOPEP–UWM database (Minkiewicz et al. in Int J Mol Sci 20(23):5978, 2019). Buffalo milk protein is a suitable precursor to produce bioactive peptides, particularly dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE) inhibitory peptides. Two novel ACE inhibitory peptides (KPW and RGP) and four potential DPP-IV inhibitory peptides (RGP, KPW, FPK and KFTW) derived from in silico proteolysis of buffalo milk proteins were screened using different integrated bioinformatic approaches (PeptideRanker, Innovagen, peptide-cutter and molecular docking). The Lineweaver–Burk plots showed that KPW (IC50?=?136.28?±?10.77 μM) and RGP (104.72?±?8.37 μM) acted as a competitive inhibitor against ACE. Similarly, KFTW (IC50?=?873.92?±?32.89 μM) was also a competitive inhibitor of DPP-IV, while KPW and FPK (82.52?±?10.37 and 126.57?±?8.45 μM, respectively) were mixed-type inhibitors. It should be emphasized that this study does not involve any clinical trial.

  相似文献   

7.
Acetes chinensis is an underutilized shrimp species thriving in the Bo Hai Gulf of China. In a previous study, we had used the protease from Bacillus sp. SM98011 to digest this kind of shrimp and found that the oligopeptide-enriched hydrolysate possessed antioxidant activity and high angiotensin I-converting enzyme (ACE) inhibitory activity with an IC50 value of 0.97 mg/ml. In this paper, by ultrafiltration, gel permeation chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC), five peptides with high ACE inhibitory activity were purified from the shrimp hydrolysates and their sequences were identified by amino acid composition analysis and molecular weight (MW) analysis. Three of them, FCVLRP (a), IFVPAF (f) and KPPETV (j), were novel ACE inhibitory peptides. Their IC50 values were 12.3 microM, 3.4 microM and 24.1 microM, respectively, and their recoveries were 30 mg/100 g (solid basis of shrimp), 19 mg/100 g and 33 mg/100 g, respectively. Lineweaver-Burk plots for the three novel peptides showed that they are all competitive inhibitors. To test the ACE inhibitory activity of peptide a, f, j after they were digested by digestive enzymes in vivo, 12 derived peptides from FCVLRP and IFVPAF were synthesized based on their amino acid sequences and the cleavage sites of digestive enzymes. No digestive enzyme cleavage site was found in KPPETV. The IC50 values of the derived peptides were determined and the result showed that except for VPAF, FC and FCVL, the ACE inhibitory activity of the other nine derived peptides did not significantly change when compared with their original peptides. Surprisingly, five peptides had lower IC50 values than their original peptides, particularly for RP (IC50 value = 0.39 microM), which is about 30 times lower than its original peptide and almost the lowest IC50 value for ACE inhibitory peptides reported. Therefore, the novel peptides identified from A. chinensis hydrolysates probably still maintain a high ACE inhibitory activity even if they are digested in vivo. This is the first report about novel ACE inhibitory peptides from hydrolysates of marine shrimp A. chinensis. The novel peptides from hydrolysate of A. chinensis and some of their derived peptides with high ACE inhibitory activity probably have potential in the treatment of hypertension or in clinical nutrition.  相似文献   

8.
Angiotensin I converting enzyme (ACE) inhibitory peptide was isolated from the marine rotifer, Brachionus rotundiformis. ACE inhibitory peptides were separated from rotifer hydrolysate prepared by Alcalase, α-chymotrypsin, Neutrase, papain, and trypsin. The Alcalase hydrolysate had the highest ACE inhibitory activity compared to the other hydrolysates. The IC50 value of Alcalase hydrolysate for ACE inhibitory activity was 0.63 mg/ml. We attempted to isolate ACE inhibitory peptides from Alcalase prepared rotifer hydrolysate using gel filtration on a Sephadex G-25 column and high performance liquid chromatography on an ODS column. The IC50 value of purified ACE inhibitory peptide was 9.64 μM, and Lineweaver–Burk plots suggest that the peptide purified from rotifer protein acts as a competitive inhibitor against ACE. Amino acid sequence of the peptide was identified as Asp-Asp-Thr-Gly-His-Asp-Phe-Glu-Asp-Thr-Gly-Glu-Ala-Met, with a molecular weight 1538 Da. The results of this study suggest that peptides derived from rotifers may be beneficial as anti-hypertension compounds in functional foods resource.  相似文献   

9.
The traditional method to obtain phycocolloids from seaweeds implies successive extraction steps with cold and hot water. The residual cake derived from phycocolloids obtaining process of red seaweed Porphyra columbina is a waste containing 27 % protein and 10.7-mg gallic acid equivalents (100 g)?1. Seaweeds contain functional proteins, and the enzymatic hydrolysis of these proteins has been shown to release bioactive peptides. The aims of this study were to extract bioactive peptides and polyphenols after enzymatic hydrolysis of the residual cake and to evaluate their ACE inhibitory and antioxidant capacities (TEAC, DPPH, and copper-chelating activity). Residual cake hydrolysate has low molecular weight peptides containing Asp, Glu, Ala, and Leu. Residual cake hydrolysate had higher protein solubility than residual cake. ACE inhibition (≈45 %) and radical scavenging activity (TEAC and DPPH inhibition) were attributed mainly to low molecular weight peptides (500 Da) and polyphenols compounds released during proteolysis. The 50 % inhibition protein concentration value (IC50) corresponded to residual cake hydrolysate was 1.01?±?0.02 and 0.91?±?0.01 g L?1, for ABTS and DPPH, respectively. Also, residual cake hydrolysate had high copper-chelating activity (≈97.5 %). Hydrolysis could be used as a means to obtain ACE inhibitory and antioxidant compounds (peptides and polyphenols) from algae protein waste and add value to the phycocolloids extraction process.  相似文献   

10.
Synthetic inhibitors of angiotensin converting enzyme (ACE) are commonly used in the treatment of hypertension and other cardiovascular diseases. But their diverse side effects stipulated nontoxic safer and economic inhibitors which can be accomplished by using peptidyl inhibitors from natural sources or functional food ingradients. Dipeptidyl peptidases cleaved dipeptide moieties from amino terminus of oligopepides so, they may be used to generate effective dipeptidyl ACE inhibitors. In present study, role of purified DPP-I and II in generation of ACE inhibitors have been explored. Results showed that collagen alpha-1(III) from chicken showed highest ACE inhibitory potential. Both dipeptidyl peptidases hydrolysed various potent inhibitory dipeptides from their oligopeptide precursors. In addition, sequential digestion of proteins with trypsin, DPP-I and II released approximate 15 % of total inhibitory peptides. Furthermore, inhibitory peptide concentration can be increased up to 30 % or more by using more proteases in presence of DPP-I and II. Results revealed that both DPP-I and II possesses the ability to generate ACE dipeptide inhibitors from oligopeptides. Still various dipeptidyl inhibitory peptides remained in generating oligopeptides, which required study of other endopeptidases with broad specificities.  相似文献   

11.
Bioactive peptides have been defined as specific protein fragments that have numerous biological activities. The aim of this study was to introduce three multifunctional peptides. Hence, we used rabbit lung angiotensin converting enzyme (ACE) inhibitor peptide AFKDEDTEEVPFR to prepare two analogous peptides KDEDTEEVP and KDEDTEEVH. ACE inhibitory, antioxidant, and antimicrobial activities of three synthetic peptides were investigated. Among the three peptides, KDEDTEEVP exhibited the highest ACE inhibitory activity with IC50 value of 69.63 ± 2.51 μM. Furthermore, the results of fluorescence spectroscopy and molecular modeling showed that KDEDTEEVP had more affinity to ACE than other peptides. The peptide of KDEDTEEVH showed the strongest antioxidant scavenging capacity on DPPH radicals (EC50 = 135 ± 9.62 μM), hydroxyl radicals (EC50 = 144 ± 8.73 μM), and ABTS radicals (EC50 = 62 ± 4.52%). Moreover, it showed the highest activity in iron-chelating test (EC50 = 226 ± 14.13 μM) and could also effectively inhibit the peroxidation of linoleic acid. The antimicrobial activity results showed that KDEDTEEVH had higher efficiency against Gram-positive than Gram-negative bacteria with MIC values of higher than 205 ± 10.75 μM. Although there was not a direct correlation between ACE inhibitor and antioxidant activity for analogous peptides, both analogous peptides exhibited more efficiency than the mother peptide. Thus, they can be considered as multifunctional peptides and would be beneficial ingredient to be used in food and drug industry.  相似文献   

12.
ACE inhibitory peptides are biologically active peptides that play a role in blood pressure regulation. When derived from food proteins during food processing or gastrointestinal digestion, these peptides could function as efficient agents in treating and preventing hypertension. However, in order to exert an antihypertensive effect by inhibition of the ACE enzyme, they have to reach the bloodstream intact. The aim of this research was to assess if the known ACE inhibitory peptide Ala-Leu-Pro-Met-His-Ile-Arg, derived from a tryptic digest of beta-lactoglobulin, could be absorbed through a Caco-2 Bbe cell monolayer in an Ussing chamber and reach the serosal side undegraded. Samples of the mucosal compartment showed high ACE inhibitory activity. No or only little ACE inhibitory activity was detected in the serosal compartment. However, when the serosal sample was concentrated three-fold, a substantial ACE inhibitory activity was registered. Concomitantly, HPLC and MS clearly showed the presence of Ala-Leu-Pro-Met-His-Ile-Arg in the mucosal compartment, whereas in the serosal compartment only MS was able to detect the heptapeptide. In conclusion. under the observed experimental conditions, the ACE inhibitory peptide Ala-Leu-Pro-Met-His-Ile-Arg was transported intact through the Caco-2 Bbe monolayer, but in concentrations too low to exert an ACE inhibitory activity.  相似文献   

13.
This study describes the characterization of a new angiotensin I-converting enzyme (ACE) inhibitory peptide from a Korean traditional rice wine. After purification of the ACE inhibitor peptides with ultrafiltration, Sephadex G-25 column chromatography, and successively C?? and SCX solid-phase extraction, reverse-phase HPLC, and size exculsion chromatography, two types of the purified ACE inhibitors with IC?? values of 0.34 mg/ml and 1.23 mg/ml were finally obtained. The two purified ACE inhibitors (F-1 and F-2) were found to have two kinds of novel oligopeptides, showing very little similarity to other ACE inhibitory peptide sequences. The amino acid sequences of the two purified oligopeptides were found to be Gln- Phe-Tyr-Ala-Val (F-1) and Ala-Gly-Pro-Val-Leu-Leu (F-2), and their molecular masses were estimated to be 468.7 Da (F-1) and 357.7 Da (F-2), respectively. They all showed a clear antihypertensive effect on spontaneously hypertensive rats at a dosage of 500 mg/kg.  相似文献   

14.
Much research has been focused on antimicrobial peptides (AMPs) derived from insect immune defense reactions due to their potential in the development of new antibiotics. In this study, a new AMP from the insect Paederus dermatitis, named sarcotoxin Pd was identified and purified using gel filtration and reverse-phase high-performance liquid chromatography. Our results showed that this peptide has broad-spectrum inhibitory effects on examined microbes. Sarcotoxin Pd is composed of 34 amino acids and its molecular weight was estimated to be 3613.26 ± 0.5 Da. Minimum inhibitory concentration (MIC) values of sarcotoxin Pd against Gram-negative bacteria were lower than Gram-positive bacteria and fungi. The identified peptide showed the highest antimicrobial effect against Klebsiella pneumonia and Escherichia coli. This peptide did not reveal significant hemolytic activity against human red blood cells particularly in the range of MIC values. Confirming the potential antimicrobial activities of synthetic peptide, this paper addresses the role of sarcotoxin Pd in the treatment of systemic microbial illnesses.  相似文献   

15.
Angiotensin I-converting enzyme (ACE) inhibitory peptide was isolated from the Styela clava flesh tissue. Nine proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase, pepsin, trypsin, α-chymotrypsin and papain) were used, and their respective enzymatic hydrolysates and an aqueous extract were screened to evaluate their potential ACE inhibitory activity. Among all of the test samples, Protamex hydrolysate possessed the highest ACE inhibitory activity, and the Protamex hydrolysate of flesh tissue showed relatively higher ACE inhibitory activity compared with the Protamex hydrolysate of tunic tissue. We attempted to isolate ACE inhibitory peptide from the Protamex hydrolysate of S. clava flesh tissue using ultrafiltration, gel filtration on a Sephadex G-25 column and high performance liquid chromatography (HPLC) on an ODS column. The purified ACE inhibitory peptide exhibited an IC50 value of 37.1 μM and was identified as non-competitive inhibitor of ACE. Amino acid sequence of the peptide was identified as Ala-His-Ile-Ile-Ile, with a molecular weight 565.3 Da. The results of this study suggested that the peptides derived from enzymes-assisted extracts of S. clava would be useful new antihypertension compounds in functional food resource.  相似文献   

16.
Angioteinsin I-converting enzyme (ACE) inhibitory peptide was isolated from marine sponge (Stylotella aurantium) hydrolysate prepared by various hydrolysis enzymes. The peptic hydrolysate exhibited highest ACE inhibitory activity among them and was fractionated into three ranges of molecular weight. The below 5 kDa fraction showed the highest ACE inhibitory activity and was used for subsequent purification steps. The amino acid sequences of the purified peptides were identified to be Tyr-Arg (337.2 Da), and Ile-Arg (287.2 Da). The purified peptides from marine sponge had an IC50 value of 237.2 μM and 306.4 μM, respectively. The molecular docking study revealed that ACE inhibitory activity of the purified peptides was mainly attributed to the hydrogen bond interactions and Pi interaction between the dipeptides and ACE. The results suggest that marine sponge, S. aurantium would be an attractive raw material for the manufacture of anti-hypertensive nutraceutical ingredients.  相似文献   

17.
18.
The antihypertensive effect of peptides: a novel alternative to drugs?   总被引:4,自引:0,他引:4  
Hong F  Ming L  Yi S  Zhanxia L  Yongquan W  Chi L 《Peptides》2008,29(6):1062-1071
Many types of bioactive peptides that inhibit angiotensin I, angiotensin I converting enzyme (ACE) and Ang II type 1 receptor (AT1) in the cardiovascular system contribute to the prevention and treatment of hypertension. These inhibitory peptides are derived from many food proteins or artificial synthetic products. Further research examining the bioavailability of ACE inhibitory peptides will lead to the development of more effective ACE inhibitory peptides and foods. Our research also demonstrates that ACE inhibitory peptide LAP may lower blood pressure with no adverse effects.  相似文献   

19.

Angiotensin converting enzyme (ACE) is considered as main causative agent in growing hypertension and other cardiovascular disorders. Inhibition of ACE by producing and purifying bioactive peptides of fermented goat milk is aimed in this study. Protein extracted from goat milk was hydrolyzed with proteolytic enzymes of LH (Lactobacillus helveticus-cicc22171). ACE inhibitory peptides were purified from fermented samples of goat milk protein by optimizing incubation time to 8 h (S-8), 16 h (S-16), 24 h (S-24) and 36 h (S-36), via ultrafiltration. S-8 was used as control to compare the ACE inhibition trend. Molecular weight cut-off; 10000 Da (PM-10) and Ultracel 3K membrane was used to perform ultrafiltration. Sample with 24 h incubation time was considered as best hydrolyzed as compared to others, by applying Nin-Hydrin reaction and SDS-PAGE analysis. ACE inhibitory assay validated the authenticity of S-24 in inhibiting ACE, in vitro. Furthermore, Q executive hybrid quadrupole-orbitrap mass spectrometry was used to determine molecular structure and amino acid sequence of ACE inhibitory peptides. Three peptides, VLPVPQKAVPQ, VLPVPQKVVPQ and TQTPVVVPPFLQPEIMGVPKVKE containing functional amino acid structure, has been identified with highest ACE inhibitory activity on the basis of intensity, size and higher concentration of hydrophobic amino acids as shown in figure as graphical abstract. Fermented goat milk containing these novel bioactive peptides, can be used as nutraceuticals to inhibit ACE and control hypertension in future.

Graphical Abstract
  相似文献   

20.
Bioactive peptides are defined as protein-based components having nutritional value and have proved roles important for the human health. In this study inhibition of angiotensin converting enzyme (ACE) by protein-based hydrolysate extracted from walnut (Juglanse regia. L.) seeds was evaluated. The peptide fraction obtained by enzymatic hydrolysis with trypsin showed higher ACE-inhibitory and lower IC50 value (0.39?±?0.05 mg/mL) than obtained by hydrolysis with chymotrypsin and proteinase K. The study of kinetics showed that by increasing the concentration of the trypsin hydrolysate from 0.01–0.5 mg/mL, Km increased, while Vmax decreased. Also the value of Ki was found to be 0.17?±?0.01 mg/mL, which means that binding affinity for the substrate decreased in the presence of inhibitor. The structural studies of ACE demonstrated that, in comparison with a commercial antihypertension drug (enalapril), the trypsin hydrolysate had no effect on secondary structure and less tertiary structure changes of protein was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号