首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barley stripe rust, caused by Puccinia striiformis f. sp. hordei, is one of the most important barley (Hordeum vulgare) diseases in the United States. The disease is best controlled using resistant cultivars. Barley genotype Grannenlose Zweizeilige (GZ) has a recessive gene (rpsGZ) that is effective against all races of P. striiformis f. sp. hordei identified so far in the USA. To develop a molecular map for mapping the gene, F8 recombinant inbred lines (RILs) were developed from the Steptoe X GZ cross through single-seed descent. Seedlings of the parents and RILs were evaluated for resistance to races PSH-14 and PSH-54 of P. striiformis f. sp. hordei under controlled greenhouse conditions. Genomic DNA was extracted from the parents and 182 F8 RILs and used for linkage analysis. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for rpsGZ. A linkage group for the gene was constructed with 12 RGAP markers, of which two markers co-segregated with the resistance locus, and two markers were closely linked to the locus with a genetic distance of 0.9 and 2.0 cM, respectively. These four markers were present only in the susceptible parent. The closest marker to the resistance allele was 11.7 cM away. Analyses of two sets of barley chromosome addition lines of wheat with the two RGAP markers that were cosegregating with the susceptibility allele showed that rpsGZ and the markers were located on the long arm of barley chromosome 4H. Further, tests with four simple sequence repeat (SSR) markers confirmed the chromosomal location of the rpsGZ gene and also integrated the RGAP markers into the known SSR-based linkage map of barley. The closest SSR marker EBmac0679 had a genetic distance of 7.5 cM with the gene in the integrated linkage map constructed with the 12 RGAP markers and 4 SSR markers. The information on chromosomal location and molecular markers for rpsGZ should be useful for incorporating this gene into commercial cultivars and combining it with other resistance genes for durable resistance.  相似文献   

2.
Adult plant resistance (APR) is considered potentially more durable for controlling barley leaf rust than seedling Rph (Resistance to Puccinia hordei) genes. A major gene for adult plant resistance to barley leaf rust has been mapped to the telomere region of chromosome 5HS. PCR-based molecular markers were developed for saturation of this region based on previously mapped simple sequence repeat, restriction fragment length polymorphism and Diversity Arrays Technology markers. In addition, defence gene homologue (DGH) and wheat expressed sequence tags mapped in specific bins were used to develop new PCR markers. Seventeen PCR-based markers were mapped to the short arm of chromosome 5H in 292 doubled haploid lines from a cross of Pompadour × Stirling, in which seven markers were mapped within 5 cM of the APR gene. The closest linked marker was about 0.7 cM from the APR gene. The wheat deletion bin map together with defence gene homologues was demonstrated to be an efficient tool for development of new molecular markers associated with the disease resistance gene. Four DGH markers were associated with the APR gene. The new molecular markers are a useful tool for marker-assisted selection of the APR gene and provided a better understanding of the molecular mechanism for leaf rust resistance.  相似文献   

3.
An F2 population from a cross between barley accession Q21861 and the Australian barley variety Galleon was used to develop RAPD markers for resistance to barley leaf rust (Puccinia hordei). Resistant and susceptible DNA bulks were constructed following the classification of F2 plants by leaf rust infection type. Bulked segregant analysis was then used to identify a 2.7-kb marker, designated OU022700 and located approximately 12cM from RphQ, a leaf rust resistance gene in Q21861. The marker was generated by PCR with the oligonucleotide primer OPU-02 (Operon). Infection types of F3 progeny were used to confirm assignment of F2 genotypes. OU022700 was shown, retrospectively, to be useful in the identification of individual F2 plants that had been originally misclassified as having susceptible infection types. Both the RAPD marker and RphQ will be potentially useful in the development of new barley cultivars.  相似文献   

4.
A set of 148 modern spring barley cultivars was explored for the extent of linkage disequilibrium (LD) between genes governing traits and nearby marker alleles. Associations of agronomically relevant traits (days to heading, plant height), resistance traits (leaf rust, barley yellow dwarf virus (BYD)), and morphological traits (rachilla hair length, lodicule size) with AFLP markers and SSR markers were found. Known major genes and QTLs were confirmed, but also new putative QTLs were found. The LD mapping clearly indicated the common occurrence of Rph3, a gene for hypersensitivity resistance against Puccinia hordei, and also confirmed the QTL Rphq2 for prolonging latency period of P. hordei in seedlings. We also found strong indication for a hitherto not reported gene for resistance or tolerance to BYD on chromosome 2, linked to SSR marker HVM054. Our conclusion is that LD mapping is a valuable additional tool in the search for applicable marker associations with major genes and QTLs. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
Sunflower production in North America has recently suffered economic losses in yield and seed quality from sunflower rust (Puccinia helianthi Schwein.) because of the increasing incidence and lack of resistance to new rust races. RHA 464, a newly released sunflower male fertility restorer line, is resistant to both of the most predominant and most virulent rust races identified in the Northern Great Plains of the USA. The gene conditioning rust resistance in RHA 464 originated from wild Helianthus annuus L., but has not been molecularly marked or determined to be independent from other rust loci. The objectives of this study are to identify molecular markers linked to the rust resistance gene and to investigate the allelism of this gene with the unmapped rust resistance genes present in HA-R6, HA-R8 and RHA 397. Virulence phenotypes of seedlings for the F2 population and F2:3 families suggested that a single dominant gene confers rust resistance in RHA 464, and this gene was designated as R 12 . Bulked segregant analysis identified ten markers polymorphic between resistant and susceptible bulks. In subsequent genetic mapping, the ten markers covered 33.4 cM of genetic distance on linkage group 11 of sunflower. A co-dominant marker CRT275-11 is the closest marker distal to R 12 with a genetic distance of 1.0 cM, while ZVG53, a dominant marker linked in the repulsion phase, is proximal to R 12 with a genetic distance of 9.6 cM. The allelism test demonstrated that R 12 is not allelic to the rust resistance genes in HA-R6, HA-R8 and RHA 397, and it is also not linked to any previously mapped rust resistance genes. Discovery of the R 12 novel rust resistance locus in sunflower and associated markers will potentially support the molecular marker-assisted introgression and pyramiding of R 12 into sunflower breeding lines.  相似文献   

6.
We have previously reported Xgwm382 as a diagnostic marker for disease resistance against yellow rust in Izgi2001 × ES14 F2 population. Among the same earlier tested 230 primers, one SSR marker (Xgwm311) also amplified a fragment which is present in the resistant parent and in the resistant bulks, but absent in the susceptible parent and in the susceptible bulks. To understand the chromosome group location of these diagnostic markers, Xgwm382 and Xgwm311, in the same population, we selected 16 SSR markers mapped only in one genome of chromosome group 2 around 1–21 cM distance to these diagnostic markers based on the SSR consensus map of wheat. Out of 16 SSRs, Xwmc658 identified resistant F2 individuals as a diagnostic marker for yellow rust disease and provided the location of Xgwm382 and Xgwm311 on chromosome 2AL in our plant material.  相似文献   

7.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars. One such cultivar resistant to most races in North America is ‘IDO377s’. To study the genetics of its resistance this spring wheat cultivar was crossed with ‘Avocet Susceptible’ (AvS). Seedlings of the parents, F2 plants, and F3 lines were tested under controlled greenhouse conditions with races PST-43 and PST-45 of P. striiformis f. sp. tritici. IDO377s carries a single dominant gene for resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A total of ten markers were identified, two of which flanked the locus at 4.4 and 5.5 cM. These flanking RGAP markers were located on chromosome 2B with nulli-tetrasomic lines of ‘Chinese Spring’. Their presence in the ditelosomic 2BL line localized them to the long arm. The chromosomal location of the resistance gene was further confirmed with two 2BL-specific SSR markers and a sequence tagged site (STS) marker previously mapped to 2BL. Based on the chromosomal location, reactions to various races of the pathogen and tests of allelism, the IDO377s gene is different from all previously designated genes for stripe rust resistance, and is therefore designated Yr43. A total of 108 wheat breeding lines and cultivars with IDO377s or related cultivars in their parentage were assayed to assess the status of the closest flanking markers and to select lines carrying Yr43. The results showed that the flanking markers were reliable for assisting selection of breeding lines carrying the resistance gene. A linked stripe rust resistance gene, previously identified as YrZak, in cultivar Zak was designated Yr44.  相似文献   

8.
A doubled haploid (DH) barley (Hordeum vulgare L.) population of 334 lines (ND24260?×?Flagship) genotyped with DArT markers was used to map genes for adult plant resistance (APR) to leaf rust (Puccinia hordei Otth) under field conditions in Australia and Uruguay. The Australian barley cultivar Flagship carries an APR gene (qRphFlag) derived from the cultivar Vada. Association analysis and composite interval mapping identified two genes conferring APR in this DH population. qRphFlag was mapped to the short arm of chromosome 5H (5HS), accounting for 64?C85% of the phenotypic variation across four field environments and 56% under controlled environmental conditions (CEC). A second quantitative trait locus (QTL) from ND24260 (qRphND) with smaller effect was mapped to chromosome 6HL. In the absence of qRphFlag, qRphND conferred only a low level of resistance. DH lines displaying the highest level of APR carried both genes. Sequence information for the critical DArT marker bPb-0837 (positioned at 21.2?cM on chromosome 5HS) was used to develop bPb-0837-PCR, a simple PCR-based marker for qRphFlag. The 245?bp fragment for bPb-0837-PCR was detected in a range of barley cultivars known to possess APR, which was consistent with previous tests of allelism, demonstrating that the qRphFlag resistant allele is common in leaf rust resistant cultivars derived from Vada and Emir. qRphFlag has been designated Rph20, the first gene conferring APR to P. hordei to be characterised in barley. The PCR marker will likely be effective in marker-assisted selection for Rph20.  相似文献   

9.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred means of control of the disease. The winter wheat cultivar Xiaoyan 54 has high-temperature resistance to stripe rust. To identify genes for stripe rust resistance, Xiaoyan 54 was crossed with Mingxian 169, a winter wheat genotype susceptible to all Chinese races of the pathogen. Seedlings and adult plants of the parents and F1, F2, F3 and F4 progeny were tested with Chinese race CYR32 under controlled greenhouse conditions and in the field. Xiaoyan 54 has two recessive resistance genes, designated as Yrxy1 and Yrxy2, conferring high-temperature resistance. Simple sequence repeat (SSR) primers were used to identify molecular markers flanking Yrxy2 using 181 plants from one segregating F3 line. A total of nine markers, two of which flanked the locus at genetic distances of 4.0 and 6.4 cM on the long arm of chromosome 2A were identified. Resistance gene analog polymorphism (RGAP) and SSR techniques were used to identify molecular markers linked to Yrxy1. A linkage group of nine RGAP and two SSR markers was constructed for Yrxy1 using 177 plants of another segregating F3 line. Two RGAP markers were closely linked to the locus with genetic distances of 2.3 and 3.5 cM. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers M8 and M9 and the two SSR markers located Yrxy1 on the short arm of chromosome 7A. The SSR markers Xbarc49 and Xwmc422 were 15.8 and 26.1 cM, respectively, from the gene. The closely linked molecular markers should be useful for incorporating the resistance genes into commercial cultivars and combining them with other genes for stripe rust resistance.  相似文献   

10.
Stripe rust, a major disease in areas where cool temperatures prevail, can strongly influence grain yield. To control this disease, breeders have incorporated seedling resistance genes from a variety of sources outside the primary wheat gene pool. The wheat line C51, introduced from the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, confers resistance to all races of Puccinia striiformis f. sp. tritici (PST) in China. To map the resistant gene(s) against stripe rust in wheat line C51, 212 F 8 recombinant inbred lines (RILs) derived from the cross X440 × C51 were inoculated with Chinese PST race CYR33 (Chinese yellow rust, CYR) in the greenhouse. The result showed that C51 carried a single dominant gene for resistance (designated YrC51) to CYR33. Simple sequence repeat (SSR) and resistance gene-analogue polymorphism (RGAP) markers that were polymorphic between the parents were used for genotyping the 212 F 8 RILs. YrC51was closely linked to two SSR loci on chromosome 2BS with genetic distances of 5.1 cM (Xgwm429) and 7.2 cM (Xwmc770), and to three RGAP markers C51R1 (XLRR For / NLRR For), C51R2 (CLRR Rev / Cre3LR-F) and C51R3 (Pto kin4/ NLRR-INV2) with genetic distances of 5.6, 1.6 and 9.2 cM, respectively. These RGAP-linked markers were then converted into STS markers. Among them, one STS marker, C51STS-4, was located at a genetic distance of 1.4 cM to YrC51 and was closely associated with resistance when validated in several populations derived from crosses between C51 and Sichuan cultivars. The results indicated that C51STS-4 can be used for marker assisted selection (MAS) and would facilitate the pyramiding of YrC51 with other genes for stripe rust resistance.  相似文献   

11.
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (PST), is one of the most destructive diseases of common wheat (Triticum aestivum L.). To determine inheritance of stripe rust resistance and map the resistance gene(s) in wheat variety C591, F1, F2, and F3 progenies derived from the Taichung 29 × C591 cross were inoculated with Chinese PST race CY32 in the greenhouse. Genetic analysis identified a single dominant gene, temporarily designated YrC591. A total of 178 SSR and 130 AFLP markers were used to test the parents and resistant and susceptible bulks. From the bulk segregant analysis, seven polymorphic SSR and two AFLP markers were selected for genotyping the F2 population. SSR marker Xcfa2040-7B, and SCAR marker SC-P35M48 derived from AFLP marker P35M48 373 were identified to be closely linked to the resistance gene with genetic distances of 8.0 and 11.7 cM, respectively. The SSR markers mapped the resistance gene on chromosome arm 7BL. In the seedling test with five PST races, the reaction patterns of C591 were different from wheat cultivars or lines carrying Yr2 or Yr6 that also are found on chromosome 7B. The results indicate that YrC591 is probably a novel stripe rust resistance gene.  相似文献   

12.
Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known for its high virulence variability and ability to evolve new virulence to resistance genes. Thus, pyramiding of several resistance genes in a single line is the best strategy for a sustainable control of wheat stem rust. Sr13 is one of the few resistance genes that are effective against wide ranging P. graminis f. sp. tritici races, including the pestilent race Ug99. Its effectiveness to Ug99 makes it a valuable source for resistance to stem rust. Molecular markers play a pivotal role in the genetic characterization of the new sources of resistance as well as in stacking two or more resistance genes in a single line. Therefore, the aim of this study was to develop molecular markers for Sr13 facilitating efficient pyramiding of Sr genes. Based on the 158 F2 individuals derived from a cross of Khapstein/9*LMPG × Morocco and SSR analyses, the Sr13 locus was mapped on chromosome 6A of wheat, and a genetic map comprising about 90 cM was constructed with the closest marker barc37 being located 4.0 cM distally of Sr13. Of the nine mapped markers, barc37 amplified an allele specific for the presence of Sr13 as shown by testing different cultivars and breeding lines. These newly developed markers will increase the efficiency of incorporating Sr13 into cultivars that are widely adopted, but susceptible to hazardous Ug99 and/or assist for the development of new elite lines that are resistant to Ug99.  相似文献   

13.
Sunflower, the fifth largest oilseed crop in the world, plays an important role in human diets. Recently, sunflower production in North America has suffered serious yield losses from newly evolved races of sunflower rust (Puccinia helianthi Schwein.). The rust resistance gene, designated R 14 , in a germplasm line PH 3 originated from a wild Helianthus annuus L. population resistant to 11 rust races. PH 3 has seedling with an extraordinary purple hypocotyl color. The objectives of this study were to map both the R 14 rust resistance gene and the purple hypocotyl gene-designated PHC in PH 3, and to identify molecular markers for marker-assisted breeding for sunflower rust resistance. A set of 517 mapped SSR/InDel and four SNP markers was used to detect polymorphisms between the parents. Fourteen markers covering a genetic distance of 17.0 cM on linkage group (LG) 11 were linked to R 14 . R 14 was mapped to the middle of the LG, with a dominant SNP marker NSA_000064 as the closest marker at a distance of 0.7 cM, and another codominant marker ORS542 linked at 3.5 cM proximally. One dominant marker ZVG53 was linked on the distal side at 6.9 cM. The PHC gene was also linked to R 14 with a distance of 6.2 cM. Chi-squared analysis of the segregation ratios of R 14 , PHC, and ten linked markers indicated a deviation from an expected 1:2:1 or 3:1 ratio. The closely linked molecular or morphological markers could facilitate sunflower rust-resistant breeding and accelerate the development of rust-resistant hybrids.  相似文献   

14.
A set of 59 spring barley introgression lines (ILs) was developed from the advanced backcross population S42. The ILs were generated by three rounds of backcrossing, two to four subsequent selfings, and, in parallel, marker-assisted selection. Each line includes a single marker-defined chromosomal segment of the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is derived from the elite barley cultivar Scarlett (H. vulgare ssp. vulgare). Based on a map containing 98 SSR markers, the IL set covers so far 86.6% (1041.5 cM) of the donor genome. Each single line contains an average exotic introgression of 39.2 cM, representing 3.2% of the exotic genome. The utility of the developed IL set is illustrated by verification of QTLs controlling resistance to powdery mildew (Blumeria graminis f. sp. hordei L.) and leaf rust (Puccinia hordei L.) which were previously identified in the advanced backcross population S42. Altogether 57.1 and 75.0% of QTLs conferring resistance to powdery mildew and leaf rust, respectively, were verified by ILs. The strongest favorable effects were mapped to regions 1H, 0–85 cM and 4H, 125–170 cM, where susceptibility to powdery mildew and leaf rust was decreased by 66.1 and 34.7%, respectively, compared to the recurrent parent. In addition, three and one new QTLs were localized, respectively. A co-localization of two favorable QTLs was identified for line S42IL-138, which holds an introgressed segment in region 7H, 166–181. Here, a reduction effect was revealed for powdery mildew as well as for leaf rust severity. This line might be a valuable resource for transferring new resistance alleles into elite cultivars. In future, we aim to cover the complete exotic genome by selecting additional ILs. We intend to conduct further phenotype studies with the IL set in regard to the trait complexes agronomic performance, malting quality, biotic stress, and abiotic stress.  相似文献   

15.

Key Message

This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat.

Abstract

Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.  相似文献   

16.
The accession PI466197 of wild barley (Hordeum vulgare ssp. spontaneum) with a newly identified resistance to powdery mildew caused by Blumeria graminis f.sp. hordei was studied with the aim to localise the genes determining resistance on a barley genetic map using DNA markers. Molecular analysis was performed in the F2 population of the cross between the winter variety ‘Tiffany’ and the resistant accession PI466197, consisting of 113 plants. DNA markers, 17 simple sequence repeats (SSRs), four sequence-tagged sites (STSs) and one cleaved amplified polymorphic sequence (CAPS) marker developed from the Mla locus sequence were used for genetic mapping and a two-locus model of resistance was shown. One of the resistance genes originating from H. vulgare ssp. spontaneum PI466197 was localised between the markers RGH1aE1 and Bmac0213 on the short arm of chromosome 1H, which is the position consistent with the Mla locus. The other gene was proven to be highly significantly linked with GBMS247, Bmac0134 and MWG878 on the short arm of chromosome 2H. The flanking markers were Bmac0134 and MWG878, assigned 4 and 8 cM from the resistance gene, respectively. Until now, no gene conferring powdery mildew resistance originating from H. vulgare has been located on the short arm of barley chromosome 2H.  相似文献   

17.
Breeding for resistant cultivars is the only way to prevent high yield loss in barley caused by the soil-borne barley mild mosaic virus (BaMMV) complex. We have characterized the BaMMV resistance of barley cv. Chikurin Ibaraki 1. Doubled haploid lines were obtained from the F1 between the susceptible six-rowed winter barley cultivar, Plaisant, and Chikurin Ibaraki 1. Each line was tested for reaction to BaMMV by mechanical inoculation followed by DAS-ELISA. Of 44 microsatellites that covered the genome, 22 polymorphic markers were tested on one susceptible and one resistant bulk, each comprising 30 lines. Differential markers and additional microsatellite markers in the same region were then tested on the whole population. A bootstrap analysis was used to compute confidence intervals of distances and to test the orders of the resistance gene and the closest markers. A segregation of 84 resistant/98 susceptible lines fitted a 1:1 ratio (2=1.08, P=0.30), which corresponds to a single gene in this DH lines population. The resistance gene was flanked by two markers near the centromeric region of chromosome 6HS—Bmag0173, at 0.6±1.2 cM, and EBmac0874, at 5.8 ± 3.4 cM. We propose to name this new resistance gene rym15. This resistance gene and associated markers will increase the possibilities to breed efficiently for new cultivars resistant to the barley mosaic disease.Communicated by P. Langridge  相似文献   

18.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

19.
Southern corn rust, caused by Puccinia polysora Underw., has destructive potential on the susceptible host. In this study, the resistance inheritance was investigated in an F 2 and its F 2:3 populations derived from a cross from two inbred lines W2D (resistant) and W222 (susceptible). The 3:1 ratio of resistant to susceptible plants indicated that the resistance is controlled by one dominant gene (named as RppD). The gene RppD was located by means of the F 2 population. Total of 11 markers, including five SSR markers, five sequence-tagged site markers and one cleaved-amplified polymorphic sequence (CAPS) marker, were identified to narrow the gene RppD down to a smaller interval. The closest markers flanking RppD were SSR marker umc1291 and CAPS marker CAPS858, with genetic distances of 2.9 and 0.8 cM, respectively. Moreover, RppD might be a novel Rpp resistance gene or haplotype differing from RppQ and RppP25 according to an allelism test among the three crosses W2D × Qi319, W2D × P25 and Qi319 × P25. As a result, RppD haplotype might be helpful to maize germplasm enhancement and disease-resistant breeding.  相似文献   

20.
Leaf rust, caused by Puccinia hordei, is an important disease afflicting barley (Hordeum vulgare) in many production regions of the world. The leaf rust resistance gene Rph15 was identified in an accession of wild barley (Hordeum vulgare subsp. spontaneum) and is one of the most broadly effective resistance genes known. Using amplified fragment length polymorphism (AFLP) and simple sequence repeat markers, Rph15 was mapped to chromosome 2HS in an F2 population derived from a cross between Bowman (Rph15), a Bowman backcross-derived line carrying Rph15, and the susceptible cultivar Bowman. AFLP marker P13M40 co-segregated with Rph15 in this mapping population and two others involving Bowman (Rph15) and cultivars Proctor and Nudinka. The dominant AFLP marker P13M40 was converted to a co-dominant PCR-based marker that may be useful in breeding programs employing marker-assisted selection. The allelic relationship between Rph15 and the gene Rph16, also mapping to chromosome 2HS, was studied. The lack of segregation in F2 progeny derived from the two resistance sources indicates that Rph15 and Rph16 are alleles of the same locus.Communicated by F. Salamini  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号