首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa L.) is the staple food crop for more than half of the world’s population. The development of hybrid rice is a practical approach to increase rice production. However, rice production was frequently affected by biotic and abiotic stresses. Rice blast and bacterial blight are two major diseases in rice growing regions. Rice plantation is also frequently affected by short-term submergence or seasonal floods in wet seasons and drought in dry seasons. The utilization of natural disease resistance (R) genes and stress tolerance genes in rice breeding is the most economic and efficient way to combat or adapt to these biotic and abiotic stresses. Rice cultivar 9311 is widely planted rice variety, either as inbred rice or the paternal line of two-line hybrid rice. Here, we report the pyramiding of rice blast R gene Pi9, bacterial blight R genes Xa21 and Xa27, and submergence tolerance gene Sub1A in 9311 genetic background through backcrossing and marker-assisted selection. The improved rice line, designated as 49311, theoretically possesses 99.2% genetic background of 9311. 49311 and its hybrid rice, GZ63S/49311, conferred disease resistance to rice blast and bacterial blight and showed tolerance to submergence for over 18 days without significant loss of viability. 49311 and its hybrids had similar agronomic traits and grain quality to 9311 and the control hybrid rice, respectively. The development of 49311 provides an improved paternal line for two-line hybrid rice production with disease resistance to rice blast and bacterial blight and tolerance to submergence.  相似文献   

2.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, severely threatens rice production worldwide. A new resistance gene, Pi-Da(t), was found in Dacca6, a local upland rice variety from the Philippines. It was mapped into a region between RM5529 and RM211 on chromosome 2, where no blast resistance gene has been reported, by bulk segregant analysis (BSA) in a BC1F2 population from a cross between Dacca6 and Jin23B. The presence of Pi-Da(t) in Jin23B background, an elite parental line preferred for its good grain quality and widely adopted in China??s three-line hybrid rice breeding program over the past 20?years, was verified by BSA and graphical genotyping with additional eight BC1F2 bulks. This work presents an example of combining gene mapping work and gene introgression with BSA and graphical genotyping methods in a backcross (BC) breeding scheme. Both the resistant Jin23B line and the linked markers will provide useful information and materials for marker-assisted breeding against blast disease in rice.  相似文献   

3.
The elite Indian rice hybrid, DRRH3 is highly susceptible to two major diseases, bacterial blight (BB) and blast, which limit its productivity significantly. In the present study, we have introgressed two major genes, viz., Xa21 and Pi54 conferring resistance against BB and blast, respectively into RPHR-1005, the male parent of DRRH3 through marker-assisted backcross breeding (MABB) and analyzed the backcross derived plants for their resistance against BB and blast. RPBio Patho-2 was used as a donor for both the resistance genes. Gene-specific markers were used for the foreground selection of Xa21 and Pi54 at each stage of backcrossing and markers specific for the major fertility restorer genes, Rf3 and Rf4 were used only at BC1F1 generation for foreground selection. Background selection was done using 62 polymorphic SSR markers and marker-assisted backcrossing was continued till BC3 generation. At BC3F4, through intensive phenotype-based selections 15 promising lines (ABLs) possessing high level of resistance against BB and blast, high yield, fine-grain type, complete fertility restoration along with better panicle exsertion and taller plant type as compared to RPHR-1005 were identified and test crossed with APMS 6 A, the female parent of DRRH3. The newly derived hybrids (i.e. improved versions of DRRH3) were observed to possess high level of resistance against BB and blast along with medium-slender grain type and yield level better than or equivalent to that of DRRH3. Our study exemplifies the utility of MABB for targeted improvement of multiple traits in hybrid rice.  相似文献   

4.
The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.  相似文献   

5.
Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. The epistatic interaction model was found adequate to explain the gene action in most of the traits. The interaction was complementary for number of productive tillers, economic yield, lesion number, infected leaf area and potential disease incidence but duplicate epistasis was observed for the remaining traits. Among the genotypes tested under epiphytotic conditions, gene pyramided lines were highly resistant to blast compared to individuals with single genes indicating that the nonallelic genes have a complementary effect when present together. The information on genetics of various contributing traits of resistance will further aid plant breeders in choosing appropriate breeding strategy for blast resistance and yield enhancement in rice.  相似文献   

6.
Rice blast is one of the most destructive diseases of rice. The most effective way of managing this disease is to develop resistant cultivars by introducing resistance genes into elite rice recipients. In this study, the near-isogenic lines (NILs) of six resistance alleles of the Piz locus (Pizt, Pi2, Pigm, Pi40, Pi9 and Piz) were constructed with Yangdao 6 as genetic background. Seedling inoculation tests showed that most of the NILs, namely NIL-Pi2, NIL-Pigm, NIL-Pi9, NIL-Pizt and NIL-Pi40, exhibited good resistance to blast with resistance frequencies (RFs) of over 82.50 %, execpt NIL-Piz which showed lower resistance with a RF of only 36.13 %. Furthermore, the improved-resistance NILs exhibited high similarity of their resistance spectra, with overlapping degrees of resistance spectrum (OD) of more than 75.83 %. However, the RF of panicle blast for all NILs decreased significantly compared with seedling blast in an artificial inoculation test. Although NIL-Pigm showed a higher panicle blast RF of 80 %, other NILs with outstanding performance in seedling blast resistance, namely NIL-Pizt, NIL-Pi2, NIL-Pi9 and NIL-Pi40, exhibited middle or low RFs of panicle blast with values from 56.67 to 33.30 %. Natural induction in a disease nursery showed a consistent trend in artificial inoculation results at seedling and heading stages. While NIL-Pigm was found to exhibit good resistance to leaf blast and panicle blast, NIL-Pi9 and NIL-Pizt were further demonstrated to show excellent resistance in Suichuan, Jiangxi province and Enshi, Hubei province, respectively, because of the race–region specificity. Agronomic traits of NILs were also investigated in order to evaluate the linkage drag effect of different alleles of the Piz locus. The resistance effects of the different alleles of the Piz locus under identical genetic background against seedling blast and panicle blast was first reported in this study, and the above results are expected to provide a theoretical support for the rational utilization of broad-spectrum resistance genes in breeding practice.  相似文献   

7.
Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance.  相似文献   

8.
The use of broad-spectrum R genes is an effective way to achieve durable resistance against rice blast (Magnaporthe oryzae Couch, anamorph: Pyricularia oryzae Cavara) in rice (Oryza sativa L.). We previously surveyed the diversity of blast resistance in 948 rice varieties and found a Myanmar rice landrace, Haoru (International Rice Research Institute genebank acc. no. IRGC33090), with broad-spectrum resistance against the standard differential blast isolates. Here, we examined the genetic basis of Haoru’s broad-spectrum resistance by using the standard blast differential system consisting of the standard isolates and differential varieties. For genetic analysis, we used a BC1F1 population and BC1F2 lines derived from crosses of Haoru with a susceptible variety, US-2. Co-segregation analysis of the reaction pattern in the BC1F1 population against the 20 standard isolates suggested that Haoru harbors three R genes. By using bulk-segregant and linkage analysis, we mapped two of the three R genes on chromosomes 12 and 6, and designated them as Pi58(t) and Pi59(t), respectively. Pi58(t) and Pi59(t) were differentiated from other reported R genes using the standard differential system. The estimated resistance spectrum of Pi58(t) corresponded with that of Haoru, suggesting that Pi58(t) is primarily responsible for Haoru’s broad-spectrum resistance. In addition, Pi59(t) and the third gene were also proven to be new and useful genetic resources for studying and improving blast resistance in rice.  相似文献   

9.
Identification of R genes and development of associated molecular markers will facilitate their application in the development of crop cultivars resistant to disease. We evaluated the resistance of a resistant germplasm ??D69??, 10 monogenic lines, and model cultivar ??Nipponbare?? to 56 M. oryzae isolates of blast disease in rice. The results demonstrated that only D69 exhibited full-spectrum resistance among the 12 investigated materials. Resistance inheritance in D69 was analyzed using a stable isolate GD08T13 with strong pathogenicity, collected from diseased panicles. A single dominant R gene was revealed and designated as Pi51(t). Through linkage analysis and the development of new markers, Pi51(t) was subsequently delimited to an interval of ~100.8?kb flanked by markers Ind306 and RM19818, where Pi2, Pi9, Piz, Piz-t, Pigm(t), and Pi40(t) reside. Different genotypes identified by linked markers pB8, Pi9-2, zt56591, and T845, and different pathotypes to the same set of isolates, distinguished Pi51(t) from Pi2, Pi9, Piz, and Piz-t. The origin of Pi40(t) in wild rice suggests that Pi51(t) and Pi40(t) are different. Comparison of resistance spectra suggests multiple R genes in D69, making its resistance durable and valuable in breeding programs. The results of this work will facilitate future studies on cloning and functional analysis of blast resistance genes for rice improvement.  相似文献   

10.
水稻抗稻瘟病基因Pi25是一个遗传传递能力强的广谱抗性基因。本研究以携带抗稻瘟病基因Pi25的BL27为抗源供体,与优质、配合力强、感稻瘟病的水稻保持系臻达B为受体亲本进行杂交、回交创制水稻抗病保持系新种质,再与臻达A测交和回交进行不育系转育,结合分子标记辅助选择和农艺性状筛选,获得3个抗性基因纯合、农艺性状和开花习性均与臻达A相似的改良不育系株系。利用福建省近年来致病性代表的22个稻瘟病菌株对3个改良不育系及其15个杂交种进行抗性鉴定,3个改良不育系的抗性频率为95.45%~100%,15个杂交种的抗性频率均达75%以上,而原始对照臻达A及其杂交种的抗性频率仅为54.55%和40.91%~63.64%。自然病圃诱发鉴定表明,3个改良不育系的叶瘟和穗颈瘟均为0级,表现高抗,而对照臻达A的叶瘟为5级,穗颈瘟为7级,表现感病;15个杂交种均表现良好的稻瘟病抗性。进一步分析比较15个杂交种的产量、农艺性状和稻米品质表现,结果表明臻达A-Pi25-3改良不育系的综合性状表现最优,继续回交转育,于2015年育成了稻瘟病抗性强、配合力好、群体整齐和性状稳定的不育系,命名为157A。研究表明,抗稻瘟病基因Pi25不仅在水稻不育系臻达A的遗传背景下的抗性表达完全,且在不同水稻恢复系测交种的背景下同样表现出较高水平的抗性,说明抗性基因Pi25对不育系稻瘟病改良的效果明显。创制的新不育系157A的稻瘟病抗性显著提高,还基本保留了原来不育系高配合力等优良特性,为选育高产、优质、抗病杂交稻新品种提供了不育系新种质。  相似文献   

11.
冈46B(G46B)是水稻生产应用中的一个农艺性状十分优良的保持系,其主要的缺陷是稻瘟病抗性较弱,通过对地谷,BL-1,Pi-4号等三个分别含抗病基因Pi-d(t)^1、Pi-b、Pi-tα^2的稻瘟病抗性材料与G46B聚合杂交,并利用抗病基因连锁的分子标记对杂交后代进行辅助选择,在聚合杂交的F2代及B1C1代群体中共获得了15株含Pi-d(t)^1、Pi-b、Pi-tα^2等三个抗稻瘟病基因的材料,其可能的基因型分别为:三基因杂合体Pi-d(t)^1pi-d(t)^1,Pi-bpi-b/Pi-tα^2 pi-tα^2 4株,双基因杂合体10株,其中Pi-d(t)^1Pi-d(t)^1/Pi-bpi-b/Pi-tα^2pi-tα^2 6株,Pi-d(t)^1pi-d(t)^1/Pi-bpi-b/Pi-tα^2Pi-tα^2 3株,Pi-d(t)^1pi-d(t)^1,Pi-bPi-6,Pi-tα^2 pi-tα^2 1株,双基因纯合体Pi-d(t)^1Pi-d(t)^1/Pi-bpi-b/Pi-tα^2Pi-tα^2仅1株,这一研究结果为进一步改良G46B的稻瘟病抗性奠定了基础,同时这一研究结果表明利用分子标记可快速、有效地实现多个抗病基因的聚合,大大提高水稻抗病育种的效率。  相似文献   

12.
The brown planthopper (BPH) is the most devastating insect pest in rice-producing areas. Shanyou 63 has become a widely cultivated hybrid in China over the last two decades; however, this line has become increasingly susceptible to bacterial blight (BB), blast, and BPH, resulting in a rapid decline in its use in rice production. In this study, a molecular marker-assisted selection (MAS) introgression of Bph14 and Bph15 was performed to improve the BPH resistance of Minghui 63 and its derived hybrids such as Shanyou 63. The effect of pyramiding genes was then comprehensively evaluated using three tests that comprised seedbox screening, feeding rate, and antixenosis for settling in the field. The results showed that the improved hybrids containing a single BPH resistance gene showed enhanced resistance (lower resistance score, honeydew weight and number of BPH settling) compared to conventional hybrids, while pyramiding two genes provided even higher resistance. Moreover, both Bph14 and Bph15 are partial dominance genes, and have a strong dosage effect on the resistance to BPH in the hybrid background, which is useful for breeding BPH-resistant hybrids. Field trial data demonstrated that yields of improved hybrid rice were higher than or similar to the control (Shanyou 63) under natural field conditions. These improved versions could be used in breeding programs for “green super rice.”  相似文献   

13.
Experiments were conducted to identify blast-resistant fragrant genotypes for the development of a durable blast-resistant rice variety during years 2012–2013. The results indicate that out of 140 test materials including 114 fragrant germplasms, 25 differential varieties (DVs) harbouring 23 blast-resistant genes, only 16 fragrant rice germplasms showed comparatively better performance against a virulent isolate of blast disease. The reaction pattern of single-spore isolate of Magnaporthe oryzae to differential varieties showed that Pish, Pi9, Pita-2 and Pita are the effective blast-resistant genes against the tested blast isolates in Bangladesh. The DNA markers profiles of selected 16 rice germplasms indicated that genotype Chinigura contained Pish, Pi9 and Pita genes; on the other hand, both BRRI dhan50 and Bawaibhog contained Pish and Pita genes in their genetic background. Genotypes Jirakatari, BR5, and Gopalbhog possessed Pish gene, while Uknimodhu, Deshikatari, Radhunipagol, Kalijira (3), Chinikanai each contained the Pita gene only. There are some materials that did not contain any target gene(s) in their genetic background, but proved resistant in pathogenicity tests. This information provided valuable genetic information for breeders to develop durable blast-resistant fragrant or aromatic rice varieties in Bangladesh.  相似文献   

14.
The identification and utilization of broad-spectrum resistance genes have been proven the most effective and economical approach to control rice blast disease. To understand the molecular mechanism of broad-spectrum resistance to rice blast, we conducted genetic and fine mapping analysis of the blast resistance gene in a Chinese rice variety: Gumei 4 (GM4) identified with broad-spectrum resistance and used in rice breeding for blast resistance for more than 20 years. Genetic and mapping analysis indicated that blast resistance to nine isolates of different Chinese races in GM4 was controlled by the same dominant locus designated as Pigm(t) that was finely mapped to an approximately 70-kb interval between markers C5483 and C0428 on chromosome 6, which contains five candidate NBS--LRR disease resistance genes. The allelism test showed that Pigm(t) was either tightly linked or allelic to Pi2 and Pi9, two known blast resistance genes. Mapping information also indicated that another blast resistance gene Pi26(t) might also be located at the same region. Candidate genes were identified by sequence analysis of the Nipponbare and Pi9 locus and the corresponding region in GM4. Sequence divergence of candidate genes was observed between GM4 and model varieties Nipponbare and 9311, and Pi9. Our current study provides essential information and new genetic resource for the cloning of functional resistance gene(s) and for marker-assisted selection in rice breeding for broad-spectrum blast resistance.Yiwen Deng and Xudong Zhu contributed equally to this work.  相似文献   

15.
The dominant rice blast resistance gene Pi54 cloned by map-based cloning approach from indica rice cultivar Tetep confers broad spectrum resistance to Magnaporthe oryzae. In this investigation, an orthologue of Pi54 designated as Pi54of was cloned from Oryza officinalis conferring high degree of resistance to M. oryzae and is functionally validated. We have also characterized the Pi54of protein and demonstrate its interaction with AVR-Pi54 protein. The Pi54of encoded ∼43 kDa small and unique cytoplasmic LRR family of disease resistance protein having unique Zinc finger domain overlapped with the leucine rich repeat regions. Pi54of showed Magnaporthe-induced expression. The phylogenetic and western blot analysis confirmed orthologous nature of Pi54 and Pi54of genes, whereas the identity of protein was confirmed through MALDI-TOF analysis. The in silico analysis showed that Pi54of is structurally more stable than other cloned Pi54 proteins. The molecular docking revealed that Pi54of protein interacts with AVR-Pi54 through novel non-LRR domains such as STI1 and RhoGEF. The STI1 and GEF domains which interact with AVR-Pi54 are also components of rice defensome complex. The Pi54of protein showed differential domain specificity while interacting with the AVR protein. Functional complementation revealed that Pi54of transferred in two rice lines belonging to indica and japonica background imparts enhanced resistance against three highly virulent strains of M. oryzae. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54of cloned from wild species of rice provides high degree of resistance to M. oryzae and might display different molecular mechanism involved in AVRPi54-Pi54of interaction.  相似文献   

16.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a devastating disease of rice worldwide. Among the 85 mapped resistance (R) genes against blast, 13 have been cloned and characterized. However, how these genes originated and how they evolved in the Oryza genus remains unclear. We previously cloned the rice blast R-genes Pi2, Pi9, and Piz-t, and analyzed their genomic structure and evolution in cultivated rice. In this study, we determined the genomic sequences of the Pi2/9 locus in four wild Oryza species representing three genomes (AA, BB and CC). The number of Pi2/9 family members in the four wild species ranges from two copies to 12 copies. Although these genes are conserved in structure and categorized into the same subfamily, sequence duplications and subsequent inversions or uneven crossing overs were observed, suggesting that the locus in different wild species has undergone dynamic changes. Positive selection was found in the leucine-rich repeat region of most members, especially in the largest clade where Pi9 is included. We also provide evidence that the Pi9 gene is more related to its homologues in the recurrent line and other rice cultivars than to those in its alleged donor species O. minuta, indicating a possible origin of the Pi9 gene from O. sativa. Comparative sequence analysis between the four wild Oryza species and the previously established reference sequences in cultivated rice species at the Pi2/9 locus has provided extensive and unique information on the genomic structure and evolution of a complex R-gene cluster in the Oryza genus.  相似文献   

17.
Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.  相似文献   

18.
The AC134922 locus is one of the most rapidly evolving nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family in rice genome. Six rice blast resistance (R) genes have been cloned from this locus and other two resistance candidate genes, Pi34 and Pi47, are also mapped to this complex locus. Therefore, it seems that more functional R genes could be identified from this locus. In this study, we cloned 22 genes from 12 cultivars based on allele-mining strategy at this locus and identified 6 rice blast R genes with 4 of them recognizing more than one isolates. Our result suggests that gene stacking might be the evolutionary strategy for complex gene locus to interact with rapidly evolving pathogens, which might provide a potential way for the cloning of durable resistance genes. Moreover, the mosaic structure and ambiguous ortholog/paralog relationships of these homologous genes, caused by frequent recombination and gene conversion, indicate that multiple alleles of this complex locus may serve as a reservoir for the evolutionary novelty of these R genes.  相似文献   

19.
辽宁地区水稻资源抗稻瘟病基因的检测分析   总被引:1,自引:0,他引:1  
为了明确辽宁地区水稻资源中抗稻瘟病基因的分布情况及抗病效应,选取辽宁地区水稻资源176份,鉴定了抗稻瘟病基因pi21、Pi36、Pi37、Pita、Pid2、Pid3、Pi5及Pib在这些材料中的分布情况,并接种鉴定了这些材料对稻瘟病的抗性。结果表明:176份供试材料中,83份对稻瘟病表现抗病,栽培稻、杂草稻及农家种中抗病品种所占的比率分别为41.48%、1.14%及4.54%。抗稻瘟病基因pi21、Pi36和Pi37在所有参试材料中均未检测到,且分别有74份、49份、47份、52份及89份材料携带Pita、Pid2、Pid3、Pi5及Pib的抗病等位基因。抗病基因绝大部分分布在栽培种中,农家种和杂草稻中分布较少。不含有抗稻瘟病基因和只携带单个抗病基因的材料对稻瘟病的抗性均较差,而抗病基因聚合可不同程度提高材料的抗性。经检测,不含有本试验鉴定的pi21等8个已克隆抗病基因的材料共32份,其中表现抗病的占21.87%;只携带1个抗稻瘟病基因的材料为52份,表现抗病的占17.31%;携带2个抗稻瘟病基因的材料为39份,表现抗病的占69.23%,其中以携带Pita+Pi5的材料最多(14份),且均表现抗病;携带3个抗稻瘟病基因的材料为31份,表现抗病的占77.42%,以携带Pita+Pid3+Pi5的材料抗性最强;携带4个抗稻瘟病基因的水稻材料22份,表现抗病的占72.73%,携带5个抗病基因的水稻材料未检测到。  相似文献   

20.
国外引进水稻种质资源的稻瘟病抗性基因检测与评价   总被引:2,自引:0,他引:2  
为了筛选出福建省水稻稻瘟病重发区育种中可利用的新抗性资源,在福建省上杭县对156份外引水稻种质资源进行了2年田间自然诱发鉴定,并对Pi2、Pi9、Pi5、Pi54、Pikm、Pita、Pia和Pib等8个稻瘟病抗性基因做了分子检测。结果表明:156份资源对苗瘟、叶瘟、穗颈瘟和综合抗性表现抗病的分别有10份、14份、29份和26份,且苗瘟抗性级别与叶瘟抗性级别(r=0.816,P<0.01)、苗瘟抗性级别与穗颈瘟抗性级别(r=0.347,P<0.01)、以及叶瘟抗性级别与穗颈瘟抗性级别(r=0.344,P<0.01),均呈极显著正相关。分子标记检测到携带稻瘟病抗性基因Pi9、Pi2、Pi54、Pikm、Pi5、Pib、Pia和Pita的水稻资源分别有1、6、20、22、37、88、101和106份,其中携带稻瘟病抗性基因Pi9和Pi2的水稻资源的抗性表现较好,表现抗病的超过60%,携带其他稻瘟病抗性基因的水稻资源表现抗病的均在50%以下;水稻资源携带0~6个稻瘟病抗性基因,随着携带抗性基因数目增加,抗病率呈上升趋势,综合抗性等级呈下降趋势。进一步研究发现,携带Pi9+Pi5+Pikm+Pia、Pi5+Pib+Pita+Pikm+Pia和Pi2+Pi54+Pib+Pita+Pikm+Pia等3个基因型的水稻资源,稻瘟病抗性较好。最后,筛选了8份稻瘟病抗性较好的材料,提供育种者参考、利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号