首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
By a scaffold elongation strategy, a series of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidene)methyl)-N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrroles and related derivatives with a linear multi-aromatic-ring skeleton were designed, synthesized, and evaluated in HIV-1 gp41 and cellular assays. Among them, the most active compounds, 12e, 12g, and 12k with a one-carbon linker (n = 1) between the rhodanine (C) and phenyl (D) rings, exhibited very promising inhibitory potency with IC50 values of 1.8–2.6 μM and EC50 values of 0.3–1.5 μM against gp41 6-HB formation and HIV-1 replication in MT-2 cells, respectively. Additionally, they were almost equally effective against both T20-sensitive and resistant strains. The related SAR studies and molecular modeling results provided potential for further developing a new class of non-peptide small molecular fusion inhibitors targeting the HIV-1 gp41.  相似文献   

2.
A series of novel S-DABO analogues of 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were compounds 6c1,6c6, and 6b1 (EC(50)=0.24 ± 0.05, 0.38 ± 0.13, 0.39 ± 0.05 μM, respectively), which possess improved or similar HIV-1 inhibitory activity compared with nevirapine (NVP) (EC(50)=0.21 μM) and delavirdine (DLV) (EC(50)=0.32 μM). None of these compounds were active against HIV-2 replication. Furthermore, enzyme inhibitory assays were performed with selected derivatives against HIV-1 wtRT, confirming that the main target of these compounds is the HIV-1 RT and these new S-DABOs are acting as NNRTIs. The preliminary structure-activity relationship (SAR) of these new congeners is discussed briefly and rationalized by docking studies.  相似文献   

3.
HIV-1 integrase is one of the three most important enzymes required for viral replication and is therefore an attractive target for anti retroviral therapy. We herein report the design and synthesis of 3-keto salicylic acid chalcone derivatives as novel HIV-1 integrase inhibitors. The most active compound, 5-bromo-2-hydroxy-3-[3-(2,3,6-trichlorophenyl)acryloyl]benzoic acid (25) was selectively active against integrase strand transfer, with an IC(50) of 3.7 μM. While most of the compounds exhibited strand transfer selectivity, a few were nonselective, such as 5-bromo-3-[3-(4-bromophenyl)acryloyl]-2-hydroxybenzoic acid (15), which was active against both 3'-processing and strand transfer with IC(50) values of 11±4 and 5±2 μM, respectively. The compounds also inhibited HIV replication with potencies comparable with their integrase inhibitory potencies. Thus, 5-bromo-2-hydroxy-3-[3-(2,3,6-trichlorophenyl)acryloyl]benzoic acid (25) and 5-bromo-3-[3-(4-bromophenyl)acryloyl]-2-hydroxybenzoic acid (15) inhibited HIV-1 replication with EC(50) values of 7.3 and 8.7 μM, respectively. A PHASE pharmacophore hypothesis was developed and validated by 3D-QSAR, which gave a predictive r(2) of 0.57 for an external test set of ten compounds. Phamacophore derived molecular alignments were used for CoMFA and CoMSIA 3D-QSAR modeling. CoMSIA afforded the best model with q(2) and r(2) values of 0.54 and 0.94, respectively. This model predicted all the ten compounds of the test set within 0.56 log units of the actual pIC(50) values; and can be used to guide the rational design of more potent novel 3-keto salicylic acid integrase inhibitors.  相似文献   

4.
Several porphyrin derivatives were reported to have anti-HIV-1 activity. Among them, meso-teta(4-carboxyphenyl)porphine (MYCPP) and other carboxyphenyl derivatives were the most potent inhibitors (EC50 < 0.7 μM). MTCPP bound to the HIV-1 enveloope glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to HIV-1 envelop glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to regions on gp120 which cannot be mimicked by peptides. Further characterization of the binding domain for MTCPP is important for understanding the antiviral activity of porphyrins and for the design of anit-HIV-1 drugs interfering with functions of the virus envelope. Results presented here show that: (i) deletion of the V3 loop from the gp120 sequence resulted in drastically diminished MTCPP binding, suggesting that the V3 loop is the dominant if not the only target site on gp120; (ii) this site was only partially mimicked by full-length V3 loop peptides; (iii) MTCPP binding to the gp120 V3 loop elicited allosteric effects resulting in decreased accessibility of the CD4 receptor binding site; (iv) the binding site for MTCPP lies within the central portion of the V3 loop (KSIHIGPGRAFY for the HIV-1 subtype B consensus sequence) and does not involve directly the GPG apex of the loop. These results may help in designing antiviral compounds with improved activity.  相似文献   

5.
In this study, we report three novel naturally occurring compounds, blapsins A (1) and B (2), and blapsamide (3) from the ethanol extract of the stink beetle, Blaps japanensis. The structures of these compounds were determined using spectroscopic methods. Compound 3 is a phenolic compound bearing a formamido group in the structure. Functional studies revealed that compounds 1 and 2 potently inhibited 14-3-3 protein-protein interactions (PPIs) with IC(50) values of 9.2 and 10.0 μM as determined by an ELISA assay, and 2.0 and 2.5 μM in an FP assay, respectively. These compounds represent the first example of natural small-molecule 14-3-3 inhibitors.  相似文献   

6.
7.
Entry of human immunodeficiency virus type 1 (HIV-1) and HIV-2 requires interactions between the envelope glycoprotein (Env) on the virus and CD4 and a chemokine receptor, either CCR5 or CXCR4, on the cell surface. The V3 loop of the HIV gp120 glycoprotein plays a critical role in this process, determining tropism for CCR5- or CXCR4-expressing cells, but details of how V3 interacts with these receptors have not been defined. Using an iterative process of deletion mutagenesis and in vitro adaptation of infectious viruses, variants of HIV-2 were derived that could replicate without V3, either with or without a deletion of the V1/V2 variable loops. The generation of these functional but markedly minimized Envs required adaptive changes on the gp120 core and gp41 transmembrane glycoprotein. V3-deleted Envs exhibited tropism for both CCR5- and CXCR4-expressing cells, suggesting that domains on the gp120 core were mediating interactions with determinants shared by both coreceptors. Remarkably, HIV-2 Envs with V3 deletions became resistant to small-molecule inhibitors of CCR5 and CXCR4, suggesting that these drugs inhibit wild-type viruses by disrupting a specific V3 interaction with the coreceptor. This study represents a proof of concept that HIV Envs lacking V3 alone or in combination with V1/V2 that retain functional domains required for viral entry can be derived. Such minimized Envs may be useful in understanding Env function, screening for new inhibitors of gp120 core interactions with chemokine receptors, and designing novel immunogens for vaccines.  相似文献   

8.
A series of 26 diarylpyrimidines, characterized by the hydroxymethyl linker between the left wing benzene ring and the central pyrimidine, were synthesized and evaluated for in vitro anti-HIV activity. Most of the compounds exhibited moderate to excellent activities against wild-type HIV-1. Among them, compound 10i, bearing a chlorine atom at the C-2 position of left benzene ring, was the best congener and showed potent activity against wild-type HIV-1 with an EC(50) value of 0.009 μM, along with moderate activities against the double RT mutant (K103N+Y181C) HIV-1(III(B)) and HIV-2(ROD) with an EC(50) value of 6.2 and 6.0 μM, respectively. The preliminary structure-activity relationship (SAR) of this new series of compounds was also investigated.  相似文献   

9.
Two new ursane-type triterpenes, eburnealactones A and B ( 1 and 2 ), one new flavonoid, eburneatin A ( 6 ), and one new phenylethanoid glycoside, chiritoside D ( 7 ), along with 9 known compounds ( 3–5 , 8–13 ) were isolated from the whole plant of Primulina eburnea. Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HR-ESI-MS). All the compounds were evaluated for their cytotoxic activities. Compound 1 showed significant cytotoxic activities against MKN-45 cell lines and 5637 cell lines with the IC50 values of 9.57 μM and 8.30 μM, respectively. Compound 1 exhibited moderate cytotoxic activities against A549 and PATU8988T cell lines with the IC50 values of 30.70 μM and 38.22 μM, respectively. Compound 6 exhibited moderate cytotoxic activities against MKN-45, HCT116, PATU8988T, 5637 and A-673 cell lines with the IC50 values of 19.69 μM, 16.44 μM, 18.07 μM, 11.51 μM and 18.15 μM, respectively. Compound 5 showed moderate cytotoxic activities against A549 cell lines with the IC50 values of 24.06 μM.  相似文献   

10.
Bao J  Zhang DW  Zhang JZ  Huang PL  Huang PL  Lee-Huang S 《FEBS letters》2007,581(14):2737-2742
Recent experimental study found that OLE (olive leaf extract) has anti-HIV activity by blocking the HIV virus entry to host cells [Lee-Huang, S., Zhang, L., Huang, P.L., Chang, Y. and Huang, P.L. (2003) Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem. Biophys. Res. Commun. 307, 1029; Lee-Huang, S., Huang, P.L., Zhang, D., Lee, J.W., Bao, J., Sun, Y., Chang, Y.-Tae, Zhang, J.Z.H. and Huang, P.L. (2007) Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol. Biochem. Biophys. Res. Commun. 354, 872-878, 879-884]. As part of a joint experimental and theoretical effort, we report here computational study to help identify and characterize the binding complexes of several main compounds of OLE (olive leaf extract) to HIV-1 envelop protein gp41. A number of possible binding modes are found by docking oleuropein and its metabolites, aglycone, elenolic acid and hydroxytyrosol, onto the hydrophobic pocket on gp41. Detailed OLE-gp41 binding interactions and free energies of binding are obtained through molecular dynamics simulation and MM-PBSA calculation. Specific molecular interactions in our predicted OLE/gp41 complexes are identified and hydroxytyrosol is identified to be the main moiety for binding to gp41. This computational study complements the corresponding experimental investigation and helps establish a good starting point for further refinement of OLE-based gp41 inhibitors.  相似文献   

11.
In the course of our program to search for protein tyrosine phosphatase 1B (PTPB) inhibitors, five new 5-deoxyflavonoids along with eight known derivatives were isolated from EtOAc layer of the root bark of Erythrina abyssinica. Their structures were elucidated on the basis of spectroscopic (IR, UV, MS, CD, 1D- and 2D-NMR) and physicochemical analyses. All isolates exhibited moderate inhibitory effects on the enzyme assay with IC?? values ranging from 14.9 ± 1.6 to 98.1 ± 11.3 μM. Compounds with prenyl and methoxy groups in the B ring (1, 2, 4, 8, and 13) possessed strong activity (IC(50) 14.9 ± 1.6 to 19.2 ± 1.1 μM), while compounds (3, 5, and 9) with 2,2-dimethylpyrano ring showed less inhibitory effect (IC?? 22.6 ± 2.3 to 72.9 ± 9.7 μM). These results suggest that prenyl and methoxy groups may be responsible for the increase on the activity of 5-deoxyflavonoids against PTP1B, but the presence of 2,2-dimethylpyrano ring on the B ring may be induced the decrease of PTP1B inhibitory activity.  相似文献   

12.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

13.
Infection by human immunodeficiency virus type 1 (HIV-1) involves the fusion of viral and cellular membranes mediated by formation of the gp41 trimer-of-hairpins. A designed protein, 5-Helix, targets the C-terminal region of the gp41 ectodomain, disrupting trimer-of-hairpins formation and blocking viral entry. Here we show that the nanomolar inhibitory potency of 5-Helix (IC50 approximately 6 nm) is 4 orders of magnitude larger than its subpicomolar binding affinity (K(D) approximately 0.6 pm). This discrepancy results from the transient exposure of the 5-Helix binding site on gp41. As a consequence, inhibitory potency is determined by the association rate, not by binding affinity. For a series of 5-Helix variants with mutations in their gp41 binding sites, the IC50 and K(D) values poorly correlate. By contrast, an inverse relationship between IC50 values and association rate constants (k(on)) extends for over 2 orders of magnitude. The kinetic dependence to inhibition places temporal restrictions on an intermediate state of HIV-1 membrane fusion and suggests that access to the C-terminal region of the gp41 ectodomain is largely free from steric hindrance. Our results support the importance of association kinetics in the development of improved HIV-1 fusion inhibitors.  相似文献   

14.
Discovery of novel antimycobacterial compounds that work on distinctive targets and by diverse mechanisms of action is urgently required for the treatment of mycobacterial infections due to the emerging global health threat of tuberculosis. We have identified a new class of 5-ethyl or hydroxy (or methoxy) methyl-substituted pyrimidine nucleosides as potent inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis (H37Ra, H37Rv) and Mycobacterium avium. A series of 2'-'up' fluoro (or hydroxy) nucleosides (1, 2, 4-6, 9, 10, 13, 16, 18, 21, 24) was synthesized and evaluated for antimycobacterial activity. Among 2'-fluorinated compounds, 1-(3-bromo-2,3-dideoxy-2-fluoro-β-d-arabinofuranosyl)-5-ethyluracil (13) exhibited promising activity against M. bovis and Mtb alone, and showed synergism when combined with isoniazid. The most active compound emerging from these studies, 1-(β-d-arabinofuranosyl)-4-thio-5-hydroxymethyluracil (21) inhibited Mtb (H37Ra) (MIC(50)=0.5 μg/mL) and M. bovis (MIC(50)=0.5 μg/mL) at low concentrations, and was ten times more potent against Mtb (H37Ra) than cycloserine (MIC(50)=5.0 μg/mL), a second line drug. It also showed an additive effect when combined with isoniazid. Compound 21 retained sensitivity against a rifampicin-resistant (H37Rv) strain of Mtb (MIC(50)=1 μg/mL) at concentrations similar to that for a rifampicin-sensitive (H37Rv) strain, suggesting that it has no cross-resistance to a first-line anti-TB drug. In addition, the replication of M. avium was also inhibited by 21 (MIC(50)=10 μg/mL). No cellular toxicity of 13 or 21 was observed up to the highest concentration tested (CC(50)>100 μg/mL). These observations offer promise for a new drug treatment regimen to augment and complement the current chemotherapy of TB.  相似文献   

15.
Wan Z  Lu Y  Liao Q  Wu Y  Chen X 《PloS one》2012,7(6):e39225
The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline). Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 μM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 envelope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach.  相似文献   

16.
Based on molecular docking analysis of earlier results, we designed a series of 2,5-disubstituted furans/pyrroles (5a-h) as HIV-1 entry inhibitors. Compounds were synthesized by Suzuki-Miyaura cross coupling, followed by a Knoevenagel condensation or Wittig reaction. Four of these compounds were found to be effective in inhibiting HIV-1 infection, with the best compounds being 5f and 5h, which exhibited significant inhibition on HIV-1(IIIB) infection at micromolar levels with low cytotoxicity. These compounds are also effective in blocking HIV-1 mediated cell-cell fusion and the gp41 six-helix bundle formation, suggesting that they are also HIV-1 fusion inhibitors targeting gp41 and have potential to be developed as a new class of anti-HIV-1 agents.  相似文献   

17.
Using a human non-immune phage library comprising more than 10(9) functional human antibody specificities in Fab format, we have been able to select a set of eight monoclonal Fabs targeted against diverse epitopes of the ectodomain of gp41 from HIV-1. The antigens used for panning the antibodies comprised two soluble, disulfide-linked, trimeric polypeptides derived from gp41, N(CCG)-gp41 and N35(CCG)-N13. The former comprises an exposed trimeric coiled-coil of the N-helices of gp41 fused in helical phase to the minimal thermostable ectodomain of gp41, while the latter comprises only the trimeric coiled-coil of N-helices. The selected Fabs were probed by Western blot analysis against four antigens: N(CCG)-gp41, N35CCG-N13, N34CCG (a smaller version of N35CCG-N13), and the minimal thermostable ectodomain core of gp41 in its six-helix bundle conformation (6-HB). Three classes of Fabs were found: class A (two Fabs) interact predominantly with the 6-HB; class B (four Fabs) interact with both the 6-HB and the internal trimeric coiled-coil of N-helices; and class C (two Fabs) interact specifically with the internal trimeric coiled-coil of N-helices. The IC50 values for the Fabs, expressed as bivalent mini-antibodies, ranged from 6 microg/ml to 60 microg/ml in a quantitative vaccinia virus-based reporter gene assay for HIV-1 envelope-mediated cell fusion using the envelope from the HIV-1 T tropic strain LAV. The two most potent fusion inhibitors belonged to class B. This panel of Fabs provides a set of useful probes for studying HIV-1 envelope-mediated cell fusion and may serve as a basis for developing Fab-based anti-HIV-1 therapeutics.  相似文献   

18.
19.
A new series of pyrazolo[3,4-d]pyrimidine-6-one derivatives (2a-2j) were prepared by using the Biginelli multicomponent cyclocondensation of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1a), different aromatic aldehydes, and urea with a catalytic amount of HCl at reflux temperature. These compounds were characterized by IR, (1)H NMR, (13)C NMR, and Mass spectral data. In vitro antiamoebic activity was performed against HM1:IMSS strain of Entamoeba histolytica. The results showed that the compounds 2b, 2i, and 2j with IC(50) values of 0.37 μM, 0.04 μM, and 0.06 μM, respectively, exhibited better antiamoebic activity than the standard drug metronidazole (IC(50)?=?1.33 μM). The toxicological studies of these compounds on human breast cancer MCF-7 cell line showed that the compounds 2b, 2i, and 2j exhibited >80% viability at the concentration range of 1.56-50 μM.  相似文献   

20.
Two human monoclonal antibodies (MAbs) (2F5 and 4E10) against the human immunodeficiency virus type 1 (HIV-1) envelope g41 cluster II membrane proximal external region (MPER) broadly neutralize HIV-1 primary isolates. However, these antibody specificities are rare, are not induced by Env immunization or HIV-1 infection, and are polyspecific and also react with lipids such as cardiolipin or phosphatidylserine. To probe MPER anti-gp41 antibodies that are produced in HIV-1 infection, we have made two novel murine MAbs, 5A9 and 13H11, against HIV-1 gp41 envelope that partially cross-blocked 2F5 MAb binding to Env but did not neutralize HIV-1 primary isolates or bind host lipids. Competitive inhibition assays using labeled 13H11 MAb and HIV-1-positive patient plasma samples demonstrated that cluster II 13H11-blocking plasma antibodies were made in 83% of chronically HIV-1 infected patients and were acquired between 5 to 10 weeks after acute HIV-1 infection. Both the mouse 13H11 MAb and the three prototypic cluster II human MAbs (98-6, 126-6, and 167-D) blocked 2F5 binding to gp41 epitopes to variable degrees; the combination of 98-6 and 13H11 completely blocked 2F5 binding. These data provide support for the hypothesis that in some patients, B cells make nonneutralizing cluster II antibodies that may mask or otherwise down-modulate B-cell responses to immunogenic regions of gp41 that could be recognized by B cells capable of producing antibodies like 2F5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号