首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The simultaneous saccharification and fermentation (SSF) of sweet sorghum carbohydrates to ethanol by Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae 2541 or Zymomonas mobilis CP4 in a fed-batch fermentation process was studied. While SSF was adequately carried out by the first microorganism the process achieved its maximum value by the mixed culture of the fungus and yeast. Under optimum conditions, ethanol yields and concentrations as high as 29.7 g of ethanol per 100 g of dry sorghum stalk and 7.5 % (w/v) respectively were obtained. These values together with the high yield of sorghum crop in Greece make this process promising and worthy of further investigation for the production of fuel bioethanol.  相似文献   

2.
Solid Substrate Fermentation system (SSF) was used to produce ethanol from various starchy substrates like sweet sorghum, sweet potato, wheat flour, rice starch, soluble starch and potato starch using thermotolerant yeast isolate (VS3) by simultaneous saccharification and fermentation process. Alcohol produced was estimated by gas chromatography after an incubation time of 96 hrs at 37v°C and 42v°C. More ethanol was produced from rice starch and sweet sorghum. The maximum amount of ethanol produced from these substrates using VS3 was 10 g/100 g and 3.5 g/100 g substrate (rice starch) and 8.2 g and 7.5 g/100 g substrate (sweet sorghum) at 37v°C and 42v°C respectively.  相似文献   

3.
In order to attain a higher ethanol yield and faster ethanol fermentation rate, orthogonal experiments of ethanol fermentation with immobilized yeast from stalk juice of sweet sorghum were carried out in the shaking flasks to investigate the effect of main factors, namely, fermentation temperature, agitation rate, particles stuffing rate and pH on ethanol yield and CO(2) weight loss rate. The range analysis and analysis of variance (ANOVA) were applied for the results of orthogonal experiments. Results showed that the optimal condition for bioethanol fermentation should be A(4)B(3)C(3)D(4), namely, fermentation temperature, agitation rate, particles stuffing rate and pH were 37 degrees C, 200rpm, 25% and 5.0, respectively. The verification experiments were carried out in shaking flasks and 5L bioreactor at the corresponding parameters. The results of verification experiments in the shaking flasks showed that ethanol yield and CO(2) weight loss rate were 98.07% and 1.020gh(-1), respectively. The results of ethanol fermentation in the 5L bioreactor showed that ethanol yield and fermentation time were 93.24% and 11h, respectively. As a result, it could be concluded that the determined optimal condition A(4)B(3)C(3)D(4) was suitable and reasonable for the ethanol fermentation by immobilized Saccharomyces cerevisiae. The conclusion in the research would be beneficial for application of ethanol fermentation by immobilized S. cerevisiae from stalk juice of sweet sorghum.  相似文献   

4.
Fusaium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae 2541 fermented soluble and insoluble carbohydrates of sweet sorghum stalk directly to ethanol. Both microorganisms were first grown aerobically and fermented sorghum stalk to ethanol thereafter. During fermentation, insoluble carbohydrates were hydrolysed to soluble sugars by the celluloytic system of F. oxysporum. Ethanol yields as high as 24.4 and 33.5 g/100 g dry stalks were obtained by F. oxysporum and the mixed culture respectively, representing a theoretical yield enhancement of 11.6% and 53.6% respectively. The corresponding ethanol concentrations in the fermentation medium were 4.6% and 6.4% (w/v). These results clearly demonstrated that a large portion of insoluble carbohydrate from sorghum was converted by simultaneous saccharification and fermentation to ethanol, making the process promising for bioethanol production.  相似文献   

5.
先进固体发酵技术(ASSF)生产甜高粱乙醇   总被引:7,自引:0,他引:7  
介绍了利用高产能源作物甜高粱生产燃料乙醇的先进固态发酵(ASSF)技术,从甜高粱茎秆保存、菌种、反应器,到固体发酵过程的数学模拟和工程放大进行了系统研究。筛选出高效产乙醇的菌种CGMCC1949,固体发酵时间低于30 h,乙醇收率高于92%;优选出贮存甜高粱茎秆的有效方法,通过抑菌处理,厌氧贮存200 d糖分损失小于5%;对固态发酵过程进行了数学模拟,设计并优化了固体发酵设备,成功进行了工程放大试验,并且基于ASPEN软件对该技术进行了技术经济评价,结果表明ASSF法生产甜高粱乙醇在技术、工程和经济上均具有充分的可行性和明显优势。  相似文献   

6.
The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.  相似文献   

7.
The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.  相似文献   

8.
In cellulosic ethanol production, use of simultaneous saccharification and fermentation (SSF) has been suggested as the favorable strategy to reduce process costs. Although SSF has many advantages, a significant discrepancy still exists between the appropriate temperature for saccharification (45-50 °C) and fermentation (30-35 °C). In the present study, the potential of temperature-shift as a tool for SSF optimization for bioethanol production from cellulosic biomass was examined. Cellulosic ethanol production of the temperature-shift SSF (TS-SSF) from 16 w/v% biomass increased from 22.2 g/L to 34.3 g/L following a temperature shift from 45 to 35 °C compared with the constant temperature of 45 °C. The glucose conversion yield and ethanol production yield in the TS-SSF were 89.3% and 90.6%, respectively. At higher biomass loading (18 w/v%), ethanol production increased to 40.2 g/L with temperature-shift time within 24 h. These results demonstrated that the temperature-shift process enhances the saccharification ratio and the ethanol production yield in SSF, and the temperature-shift time for TS-SSF process can be changed according to the fermentation condition within 24 h.  相似文献   

9.
Production of α-amylase in a laboratory-scale packed-bed bioreactor by Bacillus sp. KR-8104 under solid-state fermentation (SSF) with possibility of temperature control and monitoring was studied using wheat bran (WB) as a solid substrate. The simultaneous effects of aeration rate, initial substrate moisture, and incubation temperature on α-amylase production were evaluated using response surface methodology (RSM) based on a Box-Behnken design. The optimum conditions for attaining the maximum production of α-amylase were 37°C, 72% (w/w) initial substrate moisture, and 0.15 L/min aeration. The average enzyme activity obtained under the optimized conditions was 473.8 U/g dry fermented substrate. In addition, it was observed that the production of enzyme decreased from the bottom of the bioreactor to the top.  相似文献   

10.
为研究微生物法预处理对红麻秸秆中木质素的降解及后续的红麻纤维素酶促糖化和发酵效率的影响,将白腐真菌Pleurotus sajor-caju接种在红麻秸秆培养基上固态培养,对红麻秸秆进行预处理。经P. sajor-caju培养25~35 d后,有效转化红麻秸秆中的木质素,转化率最高可达50.20%,并提高红麻纤维素的酶促水解效率,糖化率达69.33%~78.64%,与对照组相比提高了3.5~4.1倍。以微生物法预处理后的红麻秸秆样品为底物的同步糖化发酵实验表明,发酵72 h,发酵液中乙醇浓度达到18.35~  相似文献   

11.
This study evaluated the conventional jet cooking liquefaction process followed by simultaneous saccharification and fermentation (SSF) at 30% and 35% dry solids (DS) concentration of Indian sorghum feedstock for ethanol production, with addition of acid fungal protease or urea. To evaluate the efficacy of thermostable α‐amylase in liquefaction at 30% and 35% DS concentration of Indian sorghum, liquefact solubility, higher dextrins, and fermentable sugars were analyzed at the end of the process. The liquefact was further subjected to SSF using yeast. In comparison with urea, addition of an acid fungal protease during SSF process was observed to accelerate yeast growth (μ), substrate consumption (Qs), ultimately ethanol yield based on substrate (Yp/s) and ethanol productivity based on fermentation time (Qp). The fermentation efficiency and ethanol recovery were determined for both concentrations of Indian sorghum and found to be increased with use of acid fungal protease in SSF process. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 329–336, 2013  相似文献   

12.
Economic optimization of the production of ethanol by simultaneous saccharification and fermentation (SSF) requires knowledge about the influence of substrate and enzyme concentration on yield and productivity. Although SSF has been investigated extensively, the optimal conditions for SSF of softwoods have yet not been determined. In this study, SO2-impregnated and steam-pretreated spruce was used as substrate for the production of ethanol by SSF. Commercial enzymes were used in combination with the yeast Saccharomyces cerevisiae. The effects of the concentration of substrate (2% to 10% w/w) and of cellulases (5 to 32 FPU/g cellulose) were investigated. SSF was found to be sensitive to contamination because lactic acid was produced. The ethanol yield increased with increasing cellulase loading. The highest ethanol yield, 68% of the theoretical based on the glucose and mannose present in the original wood, was obtained at 5% substrate concentration. This yield corresponds to 82% of the theoretical based on the cellulose and soluble glucose and mannose present at the start of SSF. A higher substrate concentration caused inefficient fermentation, whereas a lower substrate concentration, 2%, resulted in increased formation of lactic acid, which lowered the yield. Compared with separate hydrolysis and fermentation, SSF gave a higher yield and doubled the productivity.  相似文献   

13.
《Process Biochemistry》1999,34(2):115-119
A novel solid substrate fermentation system was used to produce fuel ethanol from sweet sorghum and sweet potato using a thermotolerant Saccharomyces cerevisiae strain (VS3) and a local isolate of amylolytic Bacilllus sps. (VB9). The process was carried out on a laboratory scale using broth cultures. Alcohol produced was estimated by gas chromatography after an incubation time of 72 h at 37 and 42°C. More ethanol was produced in co-culture with a mixed substrate than with the thermotolerant yeast (VS3) alone. The maximum amount of ethanol produced in co-culture with a mixed substrate was 5 g/100 g of substrate at 37°C and 3·5 g/100 g of substrate at 42°C.  相似文献   

14.
以玉米秸秆为原料同步糖化发酵生产燃料乙醇   总被引:1,自引:0,他引:1  
以玉米秸秆为原料,经酸法预处理后,采用同步糖化发酵SSF工艺生产燃料乙醇。正交试验获得的最佳体系为:培养温度34℃、发酵pH值5.5、发酵的液固比8:1、当发酵108h后,乙醇浓度可达8.33g/L。该实验为纤维质燃料乙醇的产业化生产提供技术依据。  相似文献   

15.
温度对超高浓度酒精生料发酵体系的影响   总被引:4,自引:0,他引:4  
通过对超高底物浓度生料发酵中温度的影响研究发现,采用温度梯度的方法可大幅提高酵母的生产效率。以高粱为例,采用35%绝对干物浓度,在新型生料水解酶的配合下,通过合适的逐级降温培养方式,使用普通酒精干酵母,在90h内发酵醪液酒精浓度可达20%(V/V)以上。  相似文献   

16.

Background

Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution.

Results

An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk.

Conclusions

A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.
  相似文献   

17.
Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35°C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35°C. There was no significant accumulation (<250 μg) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35°C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.  相似文献   

18.
A novel continuous bioreactor system was developed as a shaken culture vessel for the investigation of the growth kinetics and product formation of microorganisms in milliscale. The novel bioreactor system mainly consists of a specially designed 250-mL shake flask with two inlets, one for gas supply and one for medium supply, and one combined outlet on the side of flask for exhaust gas and culture liquid. As a result of the circulating motion of the fermentation broth in the shake flask, the maximum liquid height reaches the edge of the outlet and the fermentation broth is accelerated into the outlet by centrifugal force. Additionally, the excess fermentation broth leaving the culture vessel is continuously driven by the exhaust gas. Because of the small scale and the simple handling it is possible to operate many of these shaken bioreactor vessels simultaneously. By using parallel vessels operated at different dilution rates on the same shaker, the data for a complete biomass over dilution rate (X-D) diagram of a biological culture can be evaluated in an efficient manner, thus saving money, materials, and time. Continuous fermentations of the yeast Saccharomyces cerevisiae H1022 (ATCC 32167) in the shaken bioreactor system and in a conventional stirred tank fermentor showed very similar results.  相似文献   

19.
Switchgrass (Panicum virgatum) was subjected to hydrothermolysis pretreatment and then used to study the effect of enzyme loading and temperature in a simultaneous saccharification and fermentation (SSF) with the thermotolerant yeast strain Kluyveromyces marxianus IMB3 at 8% solid loading. Various loadings of Accellerase 1500 between 0.1 and 1.1 mL g(-1) glucan were tested in SSF at 45 °C (activity of enzyme was 82.2 FPU mL(-1)). The optimum enzyme loading was 0.7 mL g(-1) glucan based on the six different enzyme loadings tested. SSFs were performed at 37, 41 and 45 °C with an enzyme loading of 0.7 mL g(-1) glucan. The highest ethanol concentration of 22.5 g L(-1) was obtained after 168 h with SSF at 45 °C, which was equivalent to 86% yield. Four different batch and fed-batch strategies were evaluated using a total solid loading of 12% (dry basis). About 32 g L(-1) ethanol was produced with the four strategies, which was equivalent to 82% yield.  相似文献   

20.
Solid-state fermentation of sweet sorghum to ethanol   总被引:2,自引:0,他引:2  
Solid-state fermentation of chopped sweet sorghum particles to ethanol was studied in static flasks using an ethanol tolerant yeast strain. The influence of various process parameters, such as temperature, yeast cell concentration, and moisture content, on the rate and extent of ethanol fermentation was investigated. Optimal values of these parameters were found to be 35 degrees C, 7 x 10(8) cells/g raw sorghum, and 70% moisture level, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号