首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branched disulfide-containing poly(amido ethyleneimines) (SS-PAEIs) are biodegradable polymeric gene carrier analogues of the well-studied, nondegradable, and often toxic branched polyethylenimines (bPEIs), but with distinct advantages for cellular transgene delivery. Clinical success of polycationic gene carriers is hampered by obscure design and formulation requirements. This present work reports synthetic and formulation properties for a graft copolymer of poly(ethylene glycol) (PEG) and a branched SS-PAEI, poly(triethylentetramine/cystaminebisacrylamide) (p(TETA/CBA)). Several laboratories have previously demonstrated the advantages of PEG conjugation to gene carriers, but have also shown that PEG conjugation may perturb plasmid DNA (pDNA) condensation, thereby interfering with nanoparticle formation. With this foundation, our studies sought to mix various amounts of p(TETA/CBA) and p(TETA/CBA)-g-PEG2k to alter the relative amount of PEG in each formulation used for polyplex formation. The influence of different PEG/polycation amounts in the formulations on polymer/nucleic acid nanoparticle (polyplex) size, surface charge, morphology, serum stability and transgene delivery was studied. Polyplex formulations were prepared using p(TETA/CBA)-g-PEG2k, p(TETA/CBA), and mixtures of the two species at 10/90 and 50/50 volumetric mixture ratios (wt/wt %), respectively. As expected, increasing the amount of PEG in the formulation adversely affects polyplex formation. However, optimal polymer mixtures could be identified using this facile approach to further clarify design and formulation requirements necessary to understand and optimize carrier stability and biological activity. This work demonstrates the feasibility to easily overcome typical problems observed when polycations are modified and thus avoids the need to synthesize multiple copolymers to identify optimal gene carrier candidates. This approach may be applied to other polycation-PEG preparations to alter polyplex characteristics for optimal stability and biological activity.  相似文献   

2.
Self-assembling protein nanocapsules can be engineered for various bionanotechnology applications. Using the dodecahedral scaffold of the E2 subunit from pyruvate dehydrogenase, we introduced non-native surface cysteines for site-directed functionalization. The modified nanoparticle's structural, assembly, and thermostability properties were comparable to the wild-type scaffold (E2-WT), and after conjugation of poly(ethylene glycol) (PEG) to these cysteines, the nanoparticle remained intact and stable up to 79.7 ± 1.8 °C. PEGylation of particles reduced uptake by human monocyte-derived macrophages and MDA-MB-231 breast cancer cells, with decreased uptake as PEG chain length is increased. In vitro C4-depletion and C5a-production assays yielded 97.6 ± 10.8% serum C4 remaining and 40.1 ± 6.0 ng/mL C5a for E2-WT, demonstrating that complement activation is weak for non-PEGylated E2 nanoparticles. Conjugation of PEG to these particles moderately increased complement response to give 79.7 ± 6.0% C4 remaining and 87.6 ± 10.1 ng/mL C5a. Our results demonstrate that PEGylation of the E2 protein nanocapsules can modulate cellular uptake and induce low levels of complement activation, likely via the classical/lectin pathways.  相似文献   

3.
"Stealth" nanoparticles made from polymer micelles have been widely explored as drug carriers for targeted drug delivery. High stability (i.e., low critical micelle concentration (CMC)) is required for their intravenous applications. Herein, we present a "core-surface cross-linking" concept to greatly enhance nanoparticle's stability: amphiphilic brush copolymers form core-surface cross-linked micelles (nanoparticles) (SCNs). The amphiphilic brush copolymers consisted of hydrophobic poly(epsilon-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) or poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMA) chains were synthesized by macromonomer copolymerization method and used to demonstrate this concept. The resulting SCNs were about 100 times more stable than micelles from corresponding amphiphilic block copolymers. The size and surface properties of the SCNs could be easily tailored by the copolymer's compositions.  相似文献   

4.
Yu X  Pishko MV 《Biomacromolecules》2011,12(9):3205-3212
Paclitaxel nanoparticles (PAX NPs) prepared with the size of 110 ± 10 nm and ζ potential of -40 ± 3 mV were encapsulated in synthetic/biomacromolecule shell chitosan, dextran-sulfate using a layer-by-layer self-assembly technique. Zeta potential measurements, analysis of X-ray photoelectron spectroscopy, and scanning electron microscopy confirmed the successful adsorption of each layer. Surface modifications of these core-shell NPs were performed by covalently conjugating with poly(ethylene glycol) (H(2)N-PEG-carboxymethyl, M(w) 3400) and fluorescence labeled wheat germ agglutinin (F-WGA) to build a biocompatible and targeted drug delivery system. 32% of PAX was released from four bilayers of biomacromolecule assembled NPs within 8 h as compared with >85% of the drug released from the bare NPs. Moreover, high cell viability with PEG conjugation and high binding capacity of WGA-modified NPs with Caco-2 cells were observed. This biocompatible and targeted NP-based drug delivery system, therefore, may be considered as a potential candidate for the treatment of colonic cancer and other diseases.  相似文献   

5.
Transferrin is a well-studied ligand for tumor targeting due to upregulation of transferrin receptors in numerous cancer cell types. Here, we report the development of a transferrin-modified, cyclodextrin polymer-based gene delivery system. The delivery system is comprised of a nanoparticle (formed by condensation of a cyclodextrin polycation with nucleic acid) that is surface-modified to display poly(ethylene glycol) (PEG) for increasing stability in biological fluids and transferrin for targeting of cancer cells that express transferrin receptor. A transferrin-PEG-adamantane conjugate is synthesized for nanoparticle modification. The transferrin conjugate retains high receptor binding and self-assembles with the nanoparticles by adamantane (host) and particle surface cyclodextrin (guest) inclusion complex formation. At low transferrin modification, the particles remain stable in physiologic salt concentrations and transfect K562 leukemia cells with increased efficiency over untargeted particles. The increase in transfection is eliminated when transfections are conducted in the presence of excess free transferrin. The transferrin-modified nanoparticles are appropriate for use in the systemic delivery of nucleic acid therapeutics for metastatic cancer applications.  相似文献   

6.
Protein conjugation with polyethylene glycol (PEG) is a valuable means for improving stability, solubility, and bioavailability of pharmaceutical proteins. Using human galectin-2 (hGal-2) and 5 kDa PEG as a model system we first produced a PEG-hGal-2 conjugate exclusively at the Cys75 residue, resulting in two monosubstituted subunits per hGal-2 homodimer. Small angle X-ray and neutron scattering (SAXS and SANS) were combined to provide complementary structural information about the PEG-hGal-2 conjugate, wherein signal generation in SAXS depends mainly on the protein while SANS data presents signals from both the protein and PEG moieties. SAXS data gave a constant radius of gyration (R(g) = 21.5 ?) for the conjugate at different concentrations and provided no evidence for an alteration of homodimeric structure or hGal-2 ellipsoidal shape upon PEGylation. In contrast, SANS data revealed a concentration dependence of R(g) for the conjugate, with the value decreasing from 31.5 ? at 2 mg/mL to 26 ? at 14 mg/mL (based on hGal-2 concentration). Scattering data have been successfully described by the model of the ellipsoidal homogeneous core (hGal-2) attached with polymer chains (PEG) at the surface. Evidently, the PEG conformation of the conjugate strongly depends on conjugate concentration and PEG's radius of gyration decreases from 24.5 to 15 ?. An excluded volume effect, arising from steric clashes between PEG molecules at high concentration, was quantified by estimating the second virial coefficient, A(2), of PEGylated hGal-2 from the SANS data. A positive value of A(2) (6.0 ± 0.4 × 10(-4) cm(3) mol g(-2)) indicates repulsive interactions between molecules, which are expected to protect the PEGylated protein against aggregation.  相似文献   

7.
The relative difference in polymeric architectures of dendrimer and linear bis(poly(ethylene glycol)) (PEG) polymer in conjugation with paclitaxel has been described. Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PAMAM G4 hydroxyl-terminated dendrimer and bis(PEG) polymer for the potential enhancement of drug solubility and cytotoxicity. Both conjugates were characterized by 1NMR, HPLC, and MALDI/TOF. In addition, molecular conformations of dendrimer, bis(PEG), paclitaxel, and its polymeric conjugates were studied by molecular modeling. Hydrolysis of the ester bond in the conjugate was analyzed by HPLC using esterase hydrolyzing enzyme. In vitro cytotoxicity of dendrimer, bis(PEG), paclitaxel, and polymeric conjugates containing paclitaxel was evaluated using A2780 human ovarian carcinoma cells. Cytotoxicity increased by 10-fold with PAMAM dendrimer-succinic acid-paclitaxel conjugate when compared with free nonconjugated drug. Data obtained indicate that the nanosized dendritic polymer conjugates can be used with good success as anticancer drug carriers.  相似文献   

8.
Water-soluble chitosan (WSC)-poly(l-aspartic acid) (PASP)-polyethylene glycol (PEG) nanoparticles (CPP nanoparticles) were prepared spontaneously under quite mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and their physicochemical properties were characterized by turbidity, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and zeta potential. PEG was chosen to modify WSC-PASP nanoparticles to make a protein-protective agent. Investigation on the encapsulation efficiency and loading capacity of the bovine serum albumin (BSA)-loaded CPP nanoparticles was also conducted. Encapsulation efficiency was obviously decreased with the increase of initial BSA concentration. Furthermore, its in vitro release characteristics were evaluated at pH 1.2, 2.5, and 7.4. In vitro release showed that these nanoparticles provided an initial burst release, followed by a slowly sustained release for more than 24 h. The BSA released from CPP nanoparticles showed no significant conformational change compared with native BSA, which is superior to the BSA released from nanoparticles without PEG. A cell viability study suggested that the nanoparticles had good biocompatibility. This nanoparticle system was considered promising as an advanced drug delivery system for the peptide and protein drug delivery.  相似文献   

9.
Cheng L  Jin C  Lv W  Ding Q  Han X 《PloS one》2011,6(9):e25433

Background

Cisplatin is a potent anticancer drug, but its clinical application has been limited due to its undesirable physicochemical characteristics and severe side effects. Better drug formulations for cisplatin are highly desired.

Methodology/Principal Findings

Herein, we have developed a nanoparticle formulation for cisplatin with high encapsulation efficiency and reduced toxicity by using cisplatin-crosslinked carboxymethyl cellulose (CMC) core nanoparticles made from poly(lactide-co-glycolide)-monomethoxy-poly(polyethylene glycol) copolymers (PLGA-mPEG). The nanoparticles have an average diameter of approximately 80 nm measured by transmission electron microscope (TEM). The encapsulation efficiency of cisplatin in the nanoparticles is up to 72%. Meanwhile, we have also observed a controlled release of cisplatin in a sustained manner and dose-dependent treatment efficacy of cisplatin-loaded nanoparticles against IGROV1-CP cells. Moreover, the median lethal dose (LD50) of the cisplatin-loaded nanoparticles was more than 100 mg/kg by intravenous administration, which was much higher than that of free cisplatin.

Conclusion

This developed cisplatin-loaded nanoparticle is a promising formulation for the delivery of cisplatin, which will be an effective therapeutic regimen of ovarian cancer without severe side effects and cumulative toxicity.  相似文献   

10.
Polyacetal-doxorubicin conjugates designed for pH-dependent degradation   总被引:2,自引:0,他引:2  
Terpolymerization of poly(ethylene glycol) (PEG), divinyl ethers, and serinol can be used to synthesize water soluble, hydrolytically labile, amino-pendent polyacetals (APEGs) suitable for drug conjugation. As these polyacetals display pH-dependent degradation (with faster rates of hydrolysis at acidic pH) and they are not inherently hepatotropic after intravenous (iv) injection, they have potential for development as biodegradable carriers to facilitate improved tumor targeting of anticancer agents. The aim of this study was to synthesize a polyacetal-doxorubicin (APEG-DOX) conjugate, determine its cytotoxicity in vitro and evaluate its potential for improved tumor targeting in vivo compared to an HPMA copolymer-DOX conjugate in clinical development. Amino-pendent polyacetals were prepared, and following succinoylation (APEG-succ), the polymeric intermediate conjugated to DOX via one of three methods using carbodiimide mediated coupling (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in aqueous solution was the most successful). The resultant APEG-DOX conjugates had a DOX content of 3.0-8.5 wt %, contained <1.2% free DOX (relative to total DOX content) and had a M(w) = 60000-100000 g/mol and M(w)/M(n) = 1.7-2.6. In vitro cytotoxicity studies showed APEG-DOX to be 10-fold less toxic toward B16F10 cells than free DOX (IC(50) = 6 microg/mL and 0.6 microg/mL respectively), but confirmed the serinol-succinoyl-DOX liberated during main-chain degradation to be biologically active. When administered iv to C57 black mice bearing subcutaneous (sc) B16F10 melanoma, APEG-DOX of M(w) = 86000 g/mol, and 5.0 wt % DOX content exhibited significantly (p < 0.05) prolonged blood half-life and enhanced tumor accumulation compared to an HPMA copolymer-GFLG-DOX conjugate of M(w) = 30000 g/mol and 6.2 wt % DOX content. Moreover, APEG-DOX exhibited lower uptake by liver and spleen. These observations suggest that APEG anticancer conjugates warrant further development as novel polymer therapeutics for improved tumor targeting.  相似文献   

11.
There are many liver diseases that could be treated with delivery of therapeutics such as DNA, proteins, or small molecules. Nanoparticles are often proposed as delivery vectors for such therapeutics; however, achieving nanoparticle accumulations in the therapeutically relevant hepatocytes is challenging. In order to address this issue, we have synthesized polymer coated, fluorescent iron oxide nanoparticles that bind and deliver DNA, as well as produce contrast for magnetic resonance imaging (MRI), fluorescence imaging, and transmission electron microscopy (TEM). The composition of the coating can be varied in a facile manner to increase the quantity of poly(ethylene glycol) (PEG) from 0% to 5%, 10%, or 25%, with the aim of reducing opsonization but maintaining DNA binding. We investigated the effect of the nanoparticle coating on DNA binding, cell uptake, cell transfection, and opsonization in vitro. Furthermore, we exploited MRI, fluorescence imaging, and TEM to investigate the distribution of the different formulations in the liver of mice. While MRI and fluorescence imaging showed that each formulation was heavily taken up in the liver at 24 h, the 10% PEG formulation was taken up by the therapeutically relevant hepatocytes more extensively than either the 0% PEG or the 5% PEG, indicating its potential for delivery of therapeutics to the liver.  相似文献   

12.
ABSTRACT: BACKGROUND: Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. METHODS: In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. RESULTS: Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 [PLUS-MINUS SIGN] 9.8 nm and the drug loading was determined to be 10.32 [PLUS-MINUS SIGN] 1.4 %. The in vitro release study illustrated a slow sustained release corresponding to 75 % drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-[INFINITY]) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. CONCLUSIONS: A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch.  相似文献   

13.
Complementary imaging modalities provide more information than either method alone can yield and we have developed a dual-mode imaging probe for combined magnetic resonance (MR) and positron emission tomography (PET) imaging. We have developed dual-mode PET/MRI active probes targeted to vascular inflammation and present synthesis of (1) an aliphatic amine polystyrene bead and (2) a novel superparamagnetic iron oxide nanoparticle targeted to macrophages that were both coupled to positron-emitting copper-64 isotopes. The amine groups of the polystyrene beads were directly conjugated with an amine-reactive form (isothiocyanate) of aza-macrocycle 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA). Iron oxide nanoparticles are dextran sulfate coated, and the surface was modified to contain aldehyde groups to conjugate to an amine-activated DOTA. Incorporation of chelated Cu-64 to nanoparticles under these conditions, which is routinely used to couple DOTA to macromolecules, was unexpectedly difficult and illustrates that traditional conjugation methods do not always work in a nanoparticle environment. Therefore, we developed new methods to couple Cu-64 to nanoparticles and demonstrate successful labeling to a range of nanoparticle types. We obtained labeling yields of 24% for the amine polystyrene beads and 21% radiolabeling yield for the anionic dextran sulfate iron oxide nanoparticles. The new coupling chemistry can be generalized for attaching chelated metals to other nanoparticle platforms.  相似文献   

14.
Liposomes (LIP), nanoparticles (NP), dendrimers (DEN), and carbon nanotubes (CNTs), represent eminent classes of drug delivery devices. A study was carried out herewith by employing docetaxel (DTX) as model drug to assess their comparative drug delivery potentials. Under optimized conditions, highest entrapment of DTX was observed in CNT-based formulation (DTX-CNTs, 74.70 ± 4.9%) followed by nanoparticles (DTX-NP, 62.34 ± 1.5%), liposome (49.2 ± 1.51%), and dendrimers (28.26 ± 1.74%). All the formulations were found to be of nanometric size. In vitro release studies were carried out in PBS (pH 7.0 and 4.0), wherein all the formulations showed biphasic release pattern. Cytotoxicity assay in human cervical cancer SiHa cells inferred lowest IC50 value of 1,235.09 ± 41.93 nM with DTX-CNTs, followed by DTX-DEN, DTX-LIP, DTX-NP with IC50 values of 1,571.22 ± 151.27, 1,653.98 ± 72.89, 1,922.75 ± 75.15 nM, respectively. Plain DTX showed higher hemolytic toxicity of 22.48 ± 0.94%, however loading of DTX inside nanocarriers drastically reduced its hemolytic toxicity (DTX-DEN, 17.22 ± 0.48%; DTX-LIP, 4.13 ± 0.19%; DTX-NP, 6.43 ± 0.44%; DTX-CNTs, 14.87 ± 1.69%).KEY WORDS: carbon nanotubes, dendrimer, drug delivery, liposomes, nanoparticles, nanotechnology  相似文献   

15.
Lipid nanoparticles based on solid matrix have emerged as potential drug carriers to improve gastrointestinal (GI) absorption and oral bioavailability of several drugs, especially lipophilic compounds. These formulations may also be used for sustained drug release. Solid lipid nanoparticle (SLN) and the newer generation lipid nanoparticle, nanostructured lipid carrier (NLC), have been studied for their capability as oral drug carriers. Biodegradable, biocompatible, and physiological lipids are generally used to prepare these nanoparticles. Hence, toxicity problems related with the polymeric nanoparticles can be minimized. Furthermore, stability of the formulations might increase than other liquid nano-carriers due to the solid matrix of these lipid nanoparticles. These nanoparticles can be produced by different formulation techniques. Scaling up of the production process from lab scale to industrial scale can be easily achieved. Reasonably high drug encapsulation efficiency of the nanoparticles was documented. Oral absorption and bioavailability of several drugs were improved after oral administration of the drug-loaded SLNs or NLCs. In this review, pros and cons, different formulation and characterization techniques, drug incorporation models, GI absorption and oral bioavailability enhancement mechanisms, stability and storage condition of the formulations, and recent advances in oral delivery of the lipid nanoparticles based on solid matrix will be discussed.  相似文献   

16.
PEGylated gold nanoparticles (diameter: 20 nm) possessing various functionalities of lactose ligand on the distal end of tethered PEG ranging from 0 to 65% were prepared to explore the effect of ligand density of the nanoparticles on their lectin binding property. UV-visible spectra of the aqueous solution of the nanoparticles revealed that the strong steric stabilization property of the PEG layer lends the nanoparticles high dispersion stability even under the physiological salt concentration (ionic strength, I = 0.15 M). The number of PEG strands on a single particle was determined to be 520 from thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) observation under controlled acceleration voltage revealed the thickness of the PEG layer on the nanoparticle to be approximately 7 nm. The area occupied by a single lactose molecule on the surface of PEGylated gold nanoparticles was then calculated based on TGA and SEM results and was varied in the range of 10-34 nm2 depending on the lactose functionality (65 approximately 20%). PEGylated gold nanoparticles with 40% and 65% lactose functionality showed a selective and time-dependent aggregation in phosphate buffer with the addition of Ricinus communis agglutinin (RCA120) lectin, a bivalent galactose-specific protein. The aggregates can be completely redispersed by adding an excess amount of galactose. Time-lapse monitoring of UV-visible spectra at 600-750 nm revealed that the aggregation of PEGylated gold nanoparticles was accelerated with an increase in both RCA120 concentration in the solution and the lactose density of the nanoparticles. Furthermore, the sensitivity of lectin detection could be controlled by the regulation of lactose density on the particle surface. Interestingly, there was a critical lactose density (>20%) observed to induce detectable particle aggregation, indicating that the interaction between the particles is triggered by the multimolecular bridging via lectin molecules.  相似文献   

17.
Conventional drug delivery systems of docetaxel (DTX) are challenged with low drug loading efficiency and potential carriers-induced toxicity. In this work, a docetaxel prodrug self-assembled nanosystem was designed and synthesized by conjugating docetaxel with oleic acid (OA) exploring a thioether as the linker, which is redox-sensitive to the redox environment within tumor cells. Notably, the carrier-free nanomedicine which does not need any carrier has obviously high drug loading that reaches 58%. Moreover, the cytotoxicity of DTX-S-OA maintains an equal level with DTX. The novel prodrug conjugate therefore has a promising perspective as carrier-free nanomedicine for cancer therapy due to its high drug loading property, redox-sensitive release and long circulation mechanism.  相似文献   

18.
Treatments specific to the medical problems caused by methamphetamine (METH) abuse are greatly needed. Toward this goal, we are developing new multivalent anti-METH antibody fragment-nanoparticle conjugates with customizable pharmacokinetic properties. We have designed a novel anti-METH single chain antibody fragment with an engineered terminal cysteine (scFv6H4Cys). Generation 3 (G3) polyamidoamine dendrimer nanoparticles were chosen for conjugation due to their monodisperse properties and multiple amine functional groups. ScFv6H4Cys was conjugated to G3 dendrimers via a heterobifunctional PEG cross-linker that is reactive to a free amine on one end and a thiol group on the other. PEG modified dendrimers were synthesized by reacting the PEG cross-linker with dendrimers in a stoichiometric ratio of 11:1, which were further reacted with 3-fold molar excess of anti-METH scFv6H4Cys. This reaction resulted in a heterogeneous mix of G3-PEG-scFv6H4Cys conjugates (dendribodies) with three to six scFv6H4Cys conjugated to each dendrimer. The dendribodies were separated from the unreacted PEG modified dendrimers and scFv6H4Cys using affinity chromatography. A detailed in vitro characterization of the PEG modified dendrimers and the dendribodies was performed to determine size, purity, and METH binding function. The dendribodies were found to have affinity for METH identical to that of the unconjugated scFv6H4Cys in saturation binding assays, whereas the PEG modified dendrimers had no affinity for METH. These data suggest that an anti-METH scFv can be successfully conjugated to a PEG modified dendrimer nanoparticle with no adverse effects on METH binding properties. This study is a critical step toward preclinical characterization and development of a novel nanomedicine for the treatment of METH abuse.  相似文献   

19.
Two methods were devised to conjugate PEG to alsterpaullone (NSC 705701) via the N of the indole ring portion of the molecule. In the first approach, activation of the indole was accomplished by reaction with p-nitrophenyl chloroformate to produce a reactive carbamate that was then condensed with a mono blocked diamine to form a urea bond followed by deblocking and conjugation to PEG. The second route used the anion of the indole and produced a carbamate bond. Both compounds were highly water soluble, were stable in buffer, and released alsterpaullone in vitro and in vivo. Studies were conducted in mice to investigate the influence of PEGylation on the plasma pharmacokinetics of alsterpaullone. The total plasma clearance rate was decreased up to 32-fold, and the biological halflife lengthened up to 8-fold when alsterpaullone was injected i.v. as a PEG-conjugate and compared to injection of the unconjugated compound. The most pronounced effect on the pharmacokinetics of alsterpaullone was produced by a 40-kDa PEG urea-linked conjugate. When the 40- and 20-kDa urea-linked conjugates were administered by i.p. injection, high relative bioavailability (46% and 99%, respectively) of alsterpaullone was observed.  相似文献   

20.
In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug–polymer were examined. Structural analysis showed that drug–polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30–55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号