首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not contain the oprD structural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N-terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted a hydrophobic protein of M(r) 41,592. Using the above-mentioned oligonucleotide, the oprD structural gene was cloned and expressed in Escherichia coli on a 2.1-kb Bam HI-KpnI fragment. DNA sequencing predicted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.  相似文献   

2.
3.
Pseudomonas aeruginosa can utilize arginine and other amino acids as both carbon and nitrogen sources. Earlier studies have shown that the specific porin OprD facilitates the diffusion of basic amino acids as well as the structurally analogous beta-lactam antibiotic imipenem. The studies reported here showed that the expression of OprD was strongly induced when arginine, histidine, glutamate, or alanine served as the sole source of carbon. The addition of succinate exerted a negative effect on induction of oprD, likely due to catabolite repression. The arginine-mediated induction was dependent on the regulatory protein ArgR, and binding of purified ArgR to its operator upstream of the oprD gene was demonstrated by gel mobility shift and DNase assays. The expression of OprD induced by glutamate as the carbon source, however, was independent of ArgR, indicating the presence of more than a single activation mechanism. In addition, it was observed that the levels of OprD responded strongly to glutamate and alanine as the sole sources of nitrogen. Thus, that the expression of oprD is linked to both carbon and nitrogen metabolism of Pseudomonas aeruginosa.  相似文献   

4.
Earlier studies proved that Pseudomonas aeruginosa OprD is a specific porin for basic amino acids and imipenem. It was also considered to function as a nonspecific porin that allowed the size-dependent uptake of monosaccharides and facilitation of the uptake of quinolone and other antibiotics. In the present study, we utilized P. aeruginosa strains with genetically defined levels of OprD to characterize the in vivo substrate selectivity of this porin. An oprD::omega interposon mutant was constructed by gene replacement utilizing an in vitro mutagenized cloned oprD gene. In addition, OprD was overexpressed from the lac promoter by cloning the oprD gene into the broad-host-range plasmid pUCP19. To test the substrate selectivity, strains were grown in minimal medium with limiting concentrations of the carbon sources glucose, gluconate, or pyruvate. In minimal medium with 0.5 mM gluconate, the growth rates of the parent strain H103 and its oprD::omega mutant H729 were only 60 and 20%, respectively, of that of the OprD-overexpressing strain H103(pXH2). In contrast, no significant differences were observed in the growth rates of these three strains on glucose or pyruvate, indicating that OprD selectively facilitated the transport of gluconate. To determine the role of OprD in antibiotic uptake, nine strains representing different levels of OprD and OprF were used to determine the MICs of different antibiotics. The results clearly demonstrated that OprD could be utilized by imipenem and meropenem but that, even when substantially overexpressed, it could not be significantly utilized by other beta-lactams, quinolones, or aminoglycosides. In addition, competition experiments confirmed that imipenem had common binding sites with basic amino acids in the OprD channel, but not with gluconate or glucose.  相似文献   

5.
6.
A total of 99 clinical isolates of metallo-ß-lactamase-negative Pseudomonas aeruginosa collected in Japan between 1998 and 2001 were studied for their susceptibilities to carbapenem agents and corresponding oprD gene mutations. The OprD sequence of each strain was grouped into two major classes, based on the pattern of alterations. Eighty strains (80.8%) were so-called 'full length type', whose OprD proteins were fully encoded. The remaining 19 strains (19.2%) were so-called 'defective type', which possessed deletions or major alterations that might cause conformational changes in the OprD porin protein. The changes in 'defective type' strains led to 15-, 17- and 23-fold increases in the geometric mean MIC for imipenem, meropenem and biapenem compared with 'full length type' strains, respectively. 'Full length type' strains were further classified into six carbapenem susceptible types with the exception of four carbapenem-resistant subtypes with additional amino acid substitutions at D43, G183, R154, G314, G316. However, 'defective type' strains were classified into four types as follows: 10 strains which contained a stop codon within the coding region; six strains which contained IS; one strain with a short deletion near the C-terminal domain; and two strains without a stop codon in the sequenced region. Western blot analysis using OprD antibody showed that binding abilities of OprD proteins against 'full length type' strains were normal, whereas those against 'defective type' strains were lost without exception. These results indicate that OprD structure and antimicrobial activities for carbapenem agents proved to be highly correlated in P. aeruginosa  相似文献   

7.
Genomes are constantly evolving. Our report highlights the wide mutational diversity of clinical as well as environmental isolates, compared with the laboratory strain(s), through the systematic genetic analysis of a chromosomal porin gene (oprD) in relation to a specific antibiotic resistance. Mutational inactivation of the oprD gene is associated with carbapenem resistance in Pseudomonas aeruginosa. The sequence of the oprD gene of 55 Pseudomonas aeruginosa natural isolates obtained from across the world--from sources as diverse as patients and rhizospheres--was analysed. A microscale mosaic structure for this gene--resulting from multiple intra- and possibly interspecies recombinational events--is reported. An array of independent and seemingly fast-occurring defective oprD mutations were found, none of which had been described before. A burn wound isolate demonstrated unusually high overall sequence variability typical of mutator strains. We also present evidence for the existence of OprD homologues in other fluorescent pseudomonads.  相似文献   

8.
This study investigated the mechanisms underlying the carbapenem resistance of bloodstream isolates of Pseudomonas aeruginosa obtained from two Korean hospitals. Of the 79 P. aeruginosa isolates, 22 and 21 were resistant to imipenem and meropenem, respectively. The 22 imipenem-resistant P. aeruginosa isolates were classified into 7 sequence types (STs) and 13 pulsotypes. Twelve imipenem-resistant isolates from one hospital were found to belong to the international clone ST111. Two imipenem-resistant P. aeruginosa ST235 isolates carried the bla IMP-6 gene, but the remaining 20 isolates did not produce carbapenemases. Mutations in the oprD gene and a related decrease in gene expression were found in 21 and 5 isolates, respectively. However, all imipenemresistant P. aeruginosa isolates showed no significant expression of OprD in the outer membrane as compared with that of carbapenem-susceptible PAO1 strain. Overexpression of genes associated with efflux pumps, including mexB, mexD, mexF, and mexY, was not found in any imipenem-resistant isolate. One imipenem-resistant P. aeruginosa isolate overexpressed the ampC gene. Our results show that the low permeability of drugs due to the mutational inactivation of OprD is primarily responsible for carbapenem resistance in bloodstream isolates of P. aeruginosa from Korean hospitals.  相似文献   

9.
OprD has been widely described for Pseudomonas aeruginosa at both structural and functional levels. Here, we describe the sequence diversity of the OprD proteins from other fluorescent Pseudomonads. We analysed the sequence of the oprD gene in each of the 49 Pseudomonas isolates, mostly putida and fluorescens species, obtained from various environmental sources, including soil, rhizosphere and hospitals. Phylogeny based on OprD sequences distinguished three well-separated clusters in the P. fluorescens species whereas P. putida isolates formed only one cluster. The OprD sequences were generally well conserved within each cluster whereas on the opposite, they were highly variable from one cluster to another and particularly with regards to the cluster of P. aeruginosa. Predicted secondary structures, based on the topological model elaborated for P. aeruginosa, suggest signatures in the large extracellular loops of OprD, which are linked to the OprD-based clusters. Correlations between these OprD-based clusters and ecological niches, growth on various carbon sources and antibiotic sensitivity were investigated.  相似文献   

10.
Disruption of the PA2491 gene in a mini-Tn5-tet insertion mutant of a clinical isolate of Pseudomonas aeruginosa increased expression of the mexEF-oprN multidrug efflux genes and decreased production of outer membrane protein OprD, concomitant with enhanced resistance to chloramphenicol, quinolones, and imipenem, which was reminiscent of previously described nfxC mutants. PA2491 encodes a probable oxidoreductase previously shown to be positively regulated by the MexT positive regulator of mexEF-oprN expression (T. Kohler, S. F. Epp, L. K. Curty, and J. C. Pechere, J. Bacteriol. 181:6300-6305, 1999). Spontaneous multidrug-resistant mutants of the P. aeruginosa clinical isolate hyperexpressing mexEF-oprN and showing reduced production of OprD were readily selected in vitro, and all of them were shown to carry mutations in PA2491, highlighting the probable significance of such mutations as determinants of MexEF-OprN-mediated multidrug resistance in vivo.  相似文献   

11.
Pseudomonas aeruginosa is an environmental bacterium involved in mineralization of organic matter. It is also an opportunistic pathogen able to cause serious infections in immunocompromised hosts. As such, it is exposed to xenobiotics including solvents, heavy metals, and antimicrobials. We studied the response of P. aeruginosa upon exposure to heavy metals or antibiotics to investigate whether common regulatory mechanisms govern resistance to both types of compounds. We showed that sublethal zinc concentrations induced resistance to zinc, cadmium, and cobalt, while lethal zinc concentrations selected mutants constitutively resistant to these heavy metals. Both zinc-induced and stable zinc-resistant strains were also resistant to the carbapenem antibiotic imipenem. On the other hand, only 20% of clones selected on imipenem were also resistant to zinc. Heavy metal resistance in the mutants could be correlated by quantitative real time PCR with increased expression of the heavy metal efflux pump CzcCBA and its cognate two-component regulator genes czcR-czcS. Western blot analysis revealed reduced expression of the basic amino acid and carbapenem-specific OprD porin in all imipenem-resistant mutants. Sequencing of the czcR-czcS DNA region in eight independent zinc- and imipenem-resistant mutants revealed the presence of the same V194L mutation in the CzcS sensor protein. Overexpression in a susceptible wild type strain of the mutated CzsS protein, but not of the wild type form, resulted in decreased oprD and increased czcC expression. We further show that zinc is released from latex urinary catheters into urine in amounts sufficient to induce carbapenem resistance in P. aeruginosa, possibly compromising treatment of urinary tract infections by this class of antibiotics.  相似文献   

12.
目的对耐亚胺培南(IMP)的铜绿假单胞菌(IRPa)相关耐药基因进行检测。方法 2003年至2009年从临床标本中分离到(P.aeruginosa)共220株,采用三维试验筛选产β-内酰胺酶的铜绿假单胞菌,应用普通PCR和多重PCR分别检测碳青霉烯酶基因和质粒携带的C类头孢菌素酶(AmpC酶)耐药基因,应用荧光定量RT-PCR的方法检测oprD2基因的表达情况。结果共检出43株产β-内酰胺酶的菌株,其中产AmpC酶、超广谱β-内酰胺酶(ESBLs)、金属β-内酰胺酶(MBLs)和未知酶菌株的构成比分别58.14%(25/43)、18.60%(8/43)、4.65%(2/43)和16.28%(7/43)。74株耐亚胺培南的铜绿假单胞菌中,有2株菌携带IMP-9基因,1株菌携带DHA质粒型AmpC酶基因,其他碳青霉烯酶基因检测为阴性。40株菌株oprD2基因表达蛋白量降低,34株oprD2基因表达蛋白量正常。结论 oprD2基因的突变或蛋白表达量降低是IRPa对亚胺培南耐药的主要原因,AmpC酶可水解亚胺培南可能与铜绿假单胞菌对亚胺培南的耐药有一定的关系,而KPC-1酶和MBLs在铜绿假单胞菌对亚胺培南耐药机制中不是主要因素。  相似文献   

13.
Pseudomonas aeruginosa carries several multidrug efflux operons, including mexEF-oprN, that contribute to its resistance to multiple antibiotics. mvaT affects the expression of several P. aeruginosa genes. In this study, we show that the mvaT mutant PAODeltamvaT is more resistant than its parent PAO1 strain to chloramphenicol and norfloxacin but more sensitive to imipenem; yet both were less resistant to chloramphenicol, norfloxacin, and imipenem than 'typical'nfxC-type mutants. Neither strain carries the deletion described for nfxC-type mutants in mexT, the mexEF-oprN regulatory gene. Expression of mexEF-oprN is increased by five- to sixfold in PAODeltamvaT, while the expression of oprD is reduced by approximately twofold. mvaT mutation had no effect on the expression of other multidrug resistance operons, although it increased the expression of several ATP-binding cassette transporter genes. We show that mvaT mutation does not affect mexEF-oprN expression through mexT or mexS. We also explored several other potential mechanisms.  相似文献   

14.
An isolate of Pseudomonas aeruginosa from cystic fibrosis was highly resistant to beta-lactams and beta-lactamase inhibitors. The resistant determinants of clinical isolate to imipenem, ceftazidim, cefriaxone and cefepime were conjugally nontransferable. The slow or nonenzymically mediated breakdown of imipenem and other broad-spectrum beta-lactams suggested the resistance of P. aeruginosa isolate to these drugs which may be attributed to both permeability and efflux. Impaired penetration of imipenem and other beta-lactams through the membrane was detected by a diminished expression of outer-membrane proteins of approximate molar mass of 46 and 39 kDa, matched to OprD and OprF, respectively. Efflux resistance mechanism for meropenem and beta-lactams has been ruled out since the isolate failed to express outer-membrane protein of approximately 50 kDa which is matched to the OprM protein channel. Thus, reduced permeability in the clinical isolate is the main mechanism conferring resistance against beta-lactams including imipenem.  相似文献   

15.
Pseudomonas aeruginosa OprD is a specific porin which facilitates the uptake of basic amino acids and imipenem across the outer membrane. In this study, we examined the effects of deletions in six of the proposed eight surface loops of OprD on the in vivo and in vitro functions of this protein. Native OprD formed very small channels in planar lipid bilayers, with an average single-channel conductance in 1.0 M KCl of 20 pS. When large numbers of OprD channels were incorporated into lipid bilayer membranes, addition of increasing concentrations of imipenem to the bathing solutions resulted in a progressive blocking of the membrane conductance of KCl, indicating the presence of a specific binding site(s) for imipenem in the OprD channel. From these experiments, the concentration of imipenem value of resulting in 50% inhibition of the initial conductance was calculated as approximately 0.6 microM. In contrast, no decrease in channel conductance was observed for the OprDdeltaL2 channel upon addition of up to 2.4 microM imipenem, confirming that external loop 2 was involved in imipenem binding. Deletion of four to eight amino acids from loops 1 and 6 had no effect on antibiotic susceptibility, whereas deletion of eight amino acids from loops 5, 7, and 8 resulted in supersusceptibility to beta-lactams, quinolones, chloramphenicol, and tetracycline. Planar lipid bilayer analysis indicated that the OprDdeltaL5 channel had a 33-fold increase in single-channel conductance in 1 M KCl but had retained its imipenem binding site. The disposition of these loop regions in the interior of the OprD channel is discussed.  相似文献   

16.
In Pseudomonas aeruginosa many of the clinically relevant resistance mechanisms result from changes in gene expression as exemplified by the Mex drug efflux pumps, the AmpC beta-lactamase and the carbapenem-specific porin OprD. We used quantitative real-time-PCR to analyze the expression of these genes in susceptible and antibiotic-resistant laboratory and clinical strains. In nalB mutants, which overexpress OprM, we observed a four- to eightfold increase in the expression of mexA, mexB, and oprM genes. MexX and mexY genes were induced eight to 12 times in the presence of 2 mg L(-1) tetracycline. The mexC/oprJ and mexE/oprN gene expression levels were increased 30- to 250-fold and 100- to 760-fold in nfxB and nfxC mutants, respectively. We further found that in defined laboratory strains expression levels of ampC and oprD genes paralleled beta-lactamase activity and OprD protein levels, respectively. Our data support the use of quantitative real-time-PCR chain reaction for the analysis of the antimicrobial resistance gene expression in P. aeruginosa.  相似文献   

17.
Aims: To detect Pseudomonas aeruginosa in water and treatment equipment biofilms of a thermae hydropathic facility and to study antibiotic susceptibility and genetic diversity. Methods and Results: One hundred and fifty‐four planktonic isolates were obtained from 2220 water samples during 4 years. Seventy‐two biofilm isolates were obtained from 23 samples of inner parts of three inhalation equipments. Antibiotic susceptibility was determined by disc diffusion. All isolates were susceptible to tested antimicrobials, except two biofilm isolates and one planktonic isolate. Twenty‐one resistant mutants were observed (nine from biofilms), mostly with imipenem (IP) resistance (81%), by diminished expression of OprD porin, as it was observed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). Random amplification polymorphic DNA showed a genetically heterogeneous population that is spread through the entire system and persistent in time. IP resistance mutation ability was spread through the population. Conclusions: The permanent assessment of Ps. aeruginosa is necessary not only in water, as expressed in official programmes, but also in equipments where biofilms are evident. Ps. aeruginosa was more prevalent in biofilm populations and presented higher ability to adapt to antibiotic pressure. Significance and Impact of the Study: Twenty‐one million people use thermae in Europe. Official microbiological quality control programmes only consider water surveillance. Present study proves the need of a review on current official programmes.  相似文献   

18.
The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes.  相似文献   

19.
The Pseudomonas aeruginosa outer membrane is intrinsically impermeable to many classes of antibiotics, due in part to its relative lack of general uptake pathways. Instead, this organism relies on a large number of substrate-specific uptake porins. Included in this group are the 19 members of the OprD family, which are involved in the uptake of a diverse array of metabolites. One of these porins, OpdH, has been implicated in the uptake of cis-aconitate. Here we demonstrate that this porin may also enable P. aeruginosa to take up other tricarboxylates. Isocitrate and citrate strongly and specifically induced the opdH gene via a mechanism involving derepression by the putative two-component regulatory system PA0756-PA0757. Planar bilayer analysis of purified OpdH demonstrated that it was a channel-forming protein with a large single-channel conductance (230 pS in 1 M KCl; 10-fold higher than that of OprD); however, we were unable to demonstrate the presence of a tricarboxylate binding site within the channel. Thus, these data suggest that the requirement for OpdH for efficient growth on tricarboxylates was likely due to the specific expression of this large-channel porin under particular growth conditions.  相似文献   

20.
Abstract Evaluation of four β-lactamase inhibitors in terms of their outer membrane permeability in Pseudomonas aeruginosa revealed that sulbactam and tazobactam diffused most efficiently and equally well. That of BRL42715 appeared to be a factor of ten lower than that of the above two, but it showed the strongest β-lactamase inhibitory activity. This is most likely due to its better β-lactamase inactivating activity. BRL42715 at 1.56 μg ml−1 lowered the minimum inhibitory concentrations of ceftazidime and imipenem in a strain producing fully derepressed β-lactamase and an undetectable level of the outer membrane protein OprD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号