首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
脂肪的过度沉积会引发多种疾病,如心脏病、高血压、高甘油三酯血症、Ⅱ型糖尿病等。小白鼠(Mus musculus)和猪(Sus domesticus)是常用的研究脂肪沉积的模式动物,近年来随着研究的深入,发现脂肪代谢调控网络错综复杂,调控因子相互作用。秀丽隐杆线虫(Caenorhabditis elegans)具有结构简单、身体透明、便于观察、繁殖周期短、易于人工培养等特征,因此使得秀丽隐杆线虫进行脂肪调控的研究成为了可能。本文通过总结国内外线虫脂肪沉积方面的研究,综述秀丽隐杆线虫研究脂肪沉积的进展。  相似文献   

2.
近几十年来,秀丽隐杆线虫(Caenorhabditis elegans)因其结构简单、通体透明、生命周期短和易于培养,常作为一种模式生物被广泛用于现代发育生物学、遗传学、抗衰老和及脂肪调控等方面的研究。本文探索了一种对秀丽隐杆线虫体内脂肪的油红O染色方法,利用1%Triton X-100的透过作用,线虫体内脂滴可被油红O更好的着色,镜下观察颜色鲜红,染色效果较好,为以后研究线虫脂肪调控奠定了基础。  相似文献   

3.
肝脏在脂肪代谢中所起的重要作用于新民(安徽省蚌埠市第十二中学233010)肝脏里具有种类繁多、含量丰富的与脂肪代谢有关的酶系,所以在脂肪代谢中起着极为重要的作用。(1)肝脏是人体合成内源性脂肪的主要场所。人体内的脂肪有两个来源,一个是食物,另一个是以...  相似文献   

4.
肥胖症是一种由于机体能量过剩所导致的慢性代谢性疾病.β3肾上腺素能受体是β肾上腺素能受体的一种亚型,主要存在于棕色脂肪及白色脂肪组织中,参与棕色脂肪组织的产热和白色脂肪组织的脂质分解以及白色脂肪棕色化的过程,在脂肪代谢中起到减脂作用.β3肾上腺素能受体激动剂能与β3肾上腺素能受体结合,从而参与脂肪代谢的过程.本文对近年...  相似文献   

5.
脂肪积累是一个复杂的生理过程,模式动物秀丽线虫(以下简称线虫)已经成为目前研究脂肪积累的重要模型.线虫中的脂肪酸代谢通路与其他物种中的代谢是基本一致的,很多关键的代谢调节基因的功能已经得到鉴定.线虫中脂肪积累涉及至少4个核心调控通路,分别为胰岛素和转化生长因子β(TGF-β)信号通路、sbp-1/ mdt-15介导的信号通路、核激素受体nhr-49介导的信号通路与雷帕霉素靶标(TOR)和氨基己糖介导的信号通路.此外,神经递质5-羟色胺、多巴胺和谷氨酸参与了脂肪积累的调控,而tub-1和bbs-1可以介导对脂肪积累的神经调控,暗示了纤毛结构与感觉神经元在脂肪积累中可能的重要功能.线虫中的研究工作对人类肥胖症等代谢疾病的研究具有重要的提示作用.  相似文献   

6.
秀丽隐杆线虫体内脂滴的尼罗红染色观察   总被引:1,自引:0,他引:1  
秀丽隐杆线虫(Caenorhabditis elegans)为常见的生物实验模式之一,也是最近作为研究脂肪沉积的一种较理想的模型,其肠道是脂肪沉积的主要场所。本文使用尼罗红染液对秀丽隐杆线虫体内的脂肪进行染色,在荧光显微镜下可见其肠道周围呈现强烈桔黄色,较好的显示了线虫体内的脂肪沉积部位,为后续研究线虫脂肪沉积的调控机制奠定了基础。  相似文献   

7.
以猪原代皮下前脂肪细胞为研究材料,检测Leptin介导JAK/STAT信号通路中基因表达水平,旨在阐明Leptin介导JAK/STAT信号通路对脂肪代谢的分子机制.用0和100 ng/mL Leptin分别处理脂肪细胞48 h,油红O染色鉴定脂肪细胞,试剂盒测定细胞中甘油三酯和游离脂肪酸含量,Real-time PCR...  相似文献   

8.
【目的】探究昆虫病原线虫嗜菌异小杆线虫沧州品系 Heterorhabditis bacteriophora strain Cangzhou侵染对蛴螬脂肪体和中肠的影响,进一步明确其对蛴螬的致病机理。【方法】采用透射电镜技术,观察暗黑鳃金龟 Hololtrichia oblita (Faldermann)和大黑鳃金龟 H. parallela Motschulsky 2龄幼虫被嗜菌异小杆线虫沧州品系侵染后其脂肪体和中肠组织的病理变化。【结果】血腔注射感染期病原线虫嗜菌异小杆线虫沧州品系悬浮液24和48 h后,观察发现暗黑鳃金龟和大黑鳃金龟2龄幼虫脂肪体和中肠的组织结构均按时序逐渐发生变化,起初表现为脂肪球变形或变小,颜色变浅,脂肪体细胞和中肠细胞内质网、线粒体肿胀,中肠微绒毛变形脱落等现象,48 h后包裹脂肪球的膜结构破裂,脂肪体细胞和中肠细胞线粒体破裂,内质网数量减少,中肠微绒毛大量脱落,同时核内染色质大量解离,核膜破裂。【结论】经昆虫病原线虫嗜菌异小杆线虫沧州品系处理后,暗黑鳃金龟和大黑鳃金龟两种金龟甲2龄幼虫脂肪体和中肠细胞均出现明显的病理变化过程,这是嗜菌异小杆线虫高效致死蛴螬的原因之一。本研究可为昆虫病原线虫作为一种生物防治手段在蛴螬的综合防治中更好地发挥作用提供理论依据。  相似文献   

9.
微生物和microRNAs均参与机体脂肪酸吸收、转运和从头合成,以及脂肪动员和储存等代谢过程的调节.宿主分泌的microRNAs可通过调控微生物生长和代谢影响脂肪代谢.微生物一方面可影响宿主microRNAs分泌,另一方面其自身也可直接分泌microRNAs,并调节宿主的代谢功能.本文综述了microRNAs和微生物对机体脂肪代谢的影响和调控机制,重点探讨了microRNAs和微生物互作调控脂肪代谢的研究进展和作用机制,以期为精准靶向预防或治疗脂肪代谢紊乱相关疾病提供新的思路和依据.  相似文献   

10.
乙酰辅酶A羧化酶在治疗肥胖中的潜在作用   总被引:3,自引:0,他引:3  
李亮  程彦伟 《生命的化学》2007,27(2):180-182
肥胖作为一种疾病引起了世界各国越来越多的重视。目前,对乙酰辅酶A羧化酶的研究表明,该酶和肥胖的发生有着重大关系.脂肪的代谢异常是导致肥胖的重要原因之一。乙酰辅酶A羧化酶是脂肪代谢过程中的一种重要的调节酶.它的产物丙二酰辅酶A的含量在一定程度上控制着脂肪酸的代谢。因此对乙酰辅酶A羧化酶的深入研究很可能为肥胖的治疗提供新的医疗手段。该文介绍乙酰辅酶A羧化酶在脂肪代谢中的作用、分类与调控.以及当前国际上对其研究的最新进展。  相似文献   

11.
The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS) microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor), rict-1 (rictor) and sgk-1 (serum glucocorticoid kinase). CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead to the staining of fat stores, but rather the sequestration of dyes in lysosome-related organelles. In contrast, fixative staining methods provide reproducible data but are prone to errors due to the interference of autofluorescent species and the non-specific staining of cellular structures other than fat stores. Importantly, both growth conditions and developmental stage should be considered when comparing methods of C. elegans lipid storage. Taken together, we confirm that CARS microscopy provides a direct, non-invasive, and label-free means to quantitatively analyze fat storage in living C. elegans.  相似文献   

12.

Background

The nematode Caenorhabditis elegans has emerged as an important model for studies of the regulation of fat storage. C. elegans feed on bacteria, and various strains of E. coli are commonly used in research settings. However, it is not known whether particular bacterial diets affect fat storage and metabolism.

Methodology/Principal Findings

Fat staining of fixed nematodes, as well as biochemical analysis of lipid classes, revealed considerable differences in fat stores in C. elegans growing on four different E. coli strains. Fatty acid composition and carbohydrate levels differ in the E. coli strains examined in these studies, however these nutrient differences did not appear to have a causative effect on fat storage levels in worms. Analysis of C. elegans strains carrying mutations disrupting neuroendocrine and other fat-regulatory pathways demonstrated that the intensity of Nile Red staining of live worms does not correlate well with biochemical methods of fat quantification. Several neuroendocrine pathway mutants and eating defective mutants show higher or lower fat storage levels than wild type, however, these mutants still show differences in fat stores when grown on different bacterial strains. Of all the mutants tested, only pept-1 mutants, which lack a functional intestinal peptide transporter, fail to show differential fat stores. Furthermore, fatty acid analysis of triacylglycerol stores reveals an inverse correlation between total fat stores and the levels of 15-methylpalmitic acid, derived from leucine catabolism.

Conclusions

These studies demonstrate that nutritional cues perceived in the intestine regulate fat storage levels independently of neuroendocrine cues. The involvement of peptide transport and the accumulation of a fatty acid product derived from an amino acid suggest that specific peptides or amino acids may provide nutritional signals regulating fat metabolism and fat storage levels.  相似文献   

13.
Summary Traditionally, the adaptive value of mammalian white fat stores is considered in relation to longterm needs such as providing protection against the vagaries of winter or signalling the reproductive system when energy reserves are sufficient to risk pregnancy. As shown here, the fat stores of young house mice could not serve such needs. Despite prolonged acclimation and excess nesting material, food deprivation at 10°C significantly lowered the fat stores of peripubertal female house mice in only 12 h, and would exhaust them in 30 h. Even close to thermoneutrality (24°C) the calculated time to exhaustion was only 70 h. The fat stores of a young house mouse are obviously too meager to offer any meaningful protection over a winter of several months duration, or even over a 5–6-week cycle of pregnancy and lactation. Furthermore, in a wild habitat where food availability and ambient temperature can vary rapidly and greatly, such fat stores would be too labile to effectively coordinate puberty with somatic development.  相似文献   

14.
Managing oxidative stress is an important physiological function for all aerobic organisms, particularly during periods of prolonged high metabolic activity, such as long‐distance migration across ecological barriers. However, no previous study has investigated the oxidative status of birds at different stages of migration and whether that oxidative status depends on the condition of the birds. In this study, we compared (1) energy stores and circulating oxidative status measures in (a) two species of Neotropical migrants with differing migration strategies that were sampled at an autumn stopover site before an ecological barrier; and (b) a species of trans‐Saharan migrant sampled at a spring stopover site after crossing an ecological barrier; and (2) circulating oxidative measures and indicators of fat metabolism in a trans‐Saharan migrant after stopovers of varying duration (0–8 nights), based on recapture records. We found fat stores to be positively correlated with circulating antioxidant capacity in Blackpoll Warblers and Red‐eyed Vireos preparing for fall migration on Block Island, USA, but uncorrelated in Garden Warblers on the island of Ponza, Italy, after a spring crossing of the Sahara Desert and Mediterranean Sea. In all circumstances, fat stores were positively correlated with circulating lipid oxidation levels. Among Garden Warblers on the island of Ponza, fat anabolism increased with stopover duration while oxidative damage levels decreased. Our study provides evidence that birds build antioxidant capacity as they build fat stores at stopover sites before long flights, but does not support the idea that antioxidant stores remain elevated in birds with high fuel levels after an ecological barrier. Our results further suggest that lipid oxidation may be an inescapable hazard of using fats as the primary fuel for flight. Yet, we also show that birds on stopover are capable of recovering from the oxidative damage they have accrued during migration, as lipid oxidation levels decrease with time on stopover. Thus, the physiological strategy of migrating songbirds may be to build prophylactic antioxidant capacity in concert with fuel stores at stopover sites before a long‐distance flight, and then repair oxidative damage while refueling at stopover sites after long‐distance flight.  相似文献   

15.
R D Waldrop  A H Meier 《Life sciences》1985,37(16):1539-1543
Warm ambient temperature (38 degrees C) provided daily for one hr induced time-dependent changes in body weight and fat stores in the Syrian hamster. In animals held on 10-hr daily photoperiods and room temperature (23 degrees C), daily one-hour thermopulses at 8 and 20 hr after light onset stimulated increases in body weights and indices of body fat storage. Abdominal fat pad weights of these groups were twice those of untreated controls after 17 and 28 days of thermoperiodic treatments. On the other hand, daily thermopulses were completely ineffective at 0 and 16 hr after light onset. These results demonstrate that body fat stores may be influenced by a temporal interaction of environmental stimuli and implicate underlying circadian mechanisms in the regulation of body fat.  相似文献   

16.
Summary Many small rodents living in the wild neither store food nor forage during the daytime. Thus they can feed only at night. Imposing this restriction upon young female laboratory mice maintained at 22°C yields a dramatic daily cycle in their fat stores. Energy is rapidly stored as fat while feeding, and then rapidly utilized during the non-feeding period. Almost one-third of the extractable whole body fat is lost during a 14 hour non-feeding period. Less fat is stored while feeding at 11°C. Thus missing a single feeding period at this cooler temperature results in a total depletion of fat stores. In an ultimate sense then, the daily challenge of surviving with such a paucity of fat reserves probably presents as great a problem to the small mammal as does the thermoregulatory cost of small body size itself. Strategies for solving this problem apparently vary immensely from population to population and from locale to locale.  相似文献   

17.
Release of (14C)5-hydroxytryptamine from human platelets by red wine   总被引:1,自引:0,他引:1  
J Jarman  V Glover  M Sandler 《Life sciences》1991,48(24):2297-2300
Red wine, at a final dilution of 1/50, caused release of [14C]5-hydroxytryptamine (5-HT) from preloaded platelets, an effect which was not observed with any white wines or beers tested. Since 5-HT, is probably released from body stores during migraine attacks and red wine is known to provoke migraine episodes in susceptible individuals, release of 5-HT, possibly from central stores, could represent a plausible mechanism for its mode of action.  相似文献   

18.
The response of the hamster adipocyte to various lipolytic (beta-adrenergic) and antilipolytic (alpha(2)-adrenergic and adenosine-dependent) stimuli was studied during the development and after cold-induced regression of fat stores. Alpha(2)-adrenergic binding ([(3)H]clonidine binding sites) was also investigated. Adipocytes came from young animals (4-5 weeks), adults (20-25 weeks), and adults submitted to a 6-week cold exposure (6 degrees C) that promoted a large decrease in fat stores and in fat cell size. The lipolytic response induced by isoproterenol (beta-agonist) was equivalent in the different groups. Adenosine and alpha(2)-adrenergic antilipolytic effects were estimated through the inhibition of theophylline-induced lipolysis by phenylisopropyladenosine and clonidine, respectively. The adenosine effect was unchanged in all the groups. In contrast, the alpha(2)-adrenergic effect, which was not present in young hamsters, increased simultaneously with fat cell size, was fully effective in adult hamsters, and had completely disappeared in small adipocytes from cold-exposed hamsters. In fat cell ghosts, alpha(2)-adrenoceptors ([(3)H]clonidine binding sites), followed similar modifications: they increased with fat cell enlargement and disappeared after cell size reduction following cold exposure. These results suggest that: 1) the increased alpha(2)-adrenergic antilipolytic response which is concomitant with fat cell enlargement could partly explain the growth-related decrease in the previously reported lipolytic effect of epinephrine; 2) the alpha(2)-receptivity of the adipocyte seems to be strictly fat cell size-dependent while the beta-adrenergic and adenosine responses are unaffected; and 3) the regulation in the adipocytes of the adenosine, alpha(2)- and beta-receptors seems to be unrelated.-Carpene, C., M. Berlan, and M. Lafontan. Influence of development and reduction of fat stores on the antilipolytic alpha(2)-adrenoceptor in hamster adipocytes: comparison with adenosine and beta-adrenergic lipolytic responses.  相似文献   

19.
During long-term fasting at rest, protein utilization is maintained at low levels until it increases at a threshold adiposity. This study examines 1) whether such a shift in energy substrate use also occurs during endurance exercise while fasting, 2) the role of corticosterone, and 3) the adrenocortical response to an acute stressor. Ten species of migrating birds caught after an endurance flight over at least 500 km were examined. Plasma uric acid and corticosterone levels were low in birds with fat stores >5% of body mass and high in birds with smaller fat stores. Corticosterone levels were very high in birds with no visible fat stores and emaciated breast muscles. Corticosterone levels increased with handling time only in birds with large fat stores. These findings suggest that 1) migrating birds with appreciable fat stores are not stressed by endurance flight, 2) a metabolic shift (increased protein breakdown), regulated by an endocrine shift (medium corticosterone levels), occurs at a threshold adiposity, as observed in birds at rest, 3) adrenocortical response to an acute stressor is inhibited after this shift, and 4) an adrenocortical response typical for an emergency situation (high corticosterone levels) is only reached when muscle protein is dangerously low.  相似文献   

20.
Fatty acid desaturation regulates membrane function and fat storage in animals. To determine the contribution of stearoyl-CoA desaturase (SCD) activity on fat storage and development in the nematode Caenorhabditis elegans, we analyzed the lipid composition and lipid droplet size in the fat-6;fat-7 desaturase mutants independently and in combination with mutants disrupted in conserved lipid metabolic pathways. C. elegans with impaired SCD activity displayed both reduced fat stores and decreased lipid droplet size. Mutants in the daf-2 (insulin-like growth factor receptor), rsks-1 (homolog of p70S6kinase, an effector of the target of rapamycin signaling pathway), and daf-7 (transforming growth factor β) displayed high fat stores, the opposite of the low fat observed in the fat-6;fat-7 desaturase mutants. The metabolic mutants in combination with fat-6;fat-7 displayed low fat stores, with the exception of the daf-2;fat-6;fat-7 triple mutants, which had increased de novo fatty acid synthesis and wild-type levels of fat stores. Notably, SCD activity is required for the formation of large-sized lipid droplets in all mutant backgrounds, as well as for normal ratios of phosphatidylcholine (PC) to phosphatidylethanolamine (PE). These studies reveal previously uncharacterized roles for SCD in the regulation of lipid droplet size and membrane phospholipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号