首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human papillomaviruses (HPV) of the high-risk type are causally involved in human tumors, in particular cervical carcinoma. Expression of the viral oncogenes E6 and E7 is maintained in HPV-positive tumors, and it was shown that E6 and E7 of HPV-16 can immortalize human keratinocytes, the natural host cells of the virus. Expression of the viral genes is also required for maintenance of the transformed phenotype. The oncogenic activity of the E6 and E7 oncoproteins is mediated by their physical and functional interaction with cellular regulatory proteins. To knock out the function of the E7 protein in living cells, we have developed peptide aptamers with high specific binding activity for the E7 protein of HPV-16. We show here that E7-binding peptide aptamers induce programmed cell death (apoptosis) in E7-expressing cells, whereas E7-negative cells are not affected. Furthermore, E7-binding peptide aptamers induce apoptosis in HPV-16-positive tumor cells derived from cervical carcinoma. The data suggest that E7-binding peptide aptamers may be useful tools to specifically eliminate HPV-positive tumors.  相似文献   

3.
Cervical carcinoma is the predominant cancer among malignancies in women throughout the world, and human papillomavirus (HPV) 16 is the most common agent linked to human cervical carcinoma. The present study was performed to investigate the mechanisms of immune escape in HPV-induced cervical cancer cells. The presence of HPV oncoproteins E6 and E7 in the extracellular fluids of HPV-containing cervical cancer cell lines SiHa and CaSki was demonstrated by ELISA. The effect of HPV 16 oncoproteins E6 and E7 on the production of IFN-gamma by IL-18 was assessed. E6 and E7 proteins reduced IL-18-induced IFN-gamma production in both primary PBMCs and the NK0 cell line. FACS analysis revealed that the viral oncoproteins reduced the binding of IL-18 to its cellular surface receptors on NK0 cells, whereas there was no effect of oncoproteins on IL-1 binding to its surface IL-1 receptors on D10S, a subclone of the murine Th cell D10.G4.1. In vitro pull-down assays also revealed that the viral oncoproteins and IL-18 bound to IL-18R alpha-chain competitively. These results suggest that the extracellular HPV 16 E6 and E7 proteins may inhibit IL-18-induced IFN-gamma production locally in HPV lesions through inhibition of IL-18 binding to its alpha-chain receptor. Down-modulation of IL-18-induced immune responses by HPV oncoproteins may contribute to viral pathogenesis or carcinogenesis.  相似文献   

4.
Expression of the high-risk human papillomavirus (HPV) E6 and E7 oncogenes is essential for the initiation and maintenance of cervical cancer. The repression of both was previously shown to result in activation of their respective tumor suppressor targets, p53 and pRb, and subsequent senescence induction in cervical cancer cells. Consequently, viral oncogene suppression is a promising approach for the treatment of HPV-positive tumors. One well-established method of E6/E7 repression involves the reexpression of the viral E2 protein which is usually deleted in HPV-positive cancer cells. Here, we show that, surprisingly, bovine papillomavirus type 1 (BPV1) E2 but not RNA interference-mediated E6/E7 repression in HPV-positive cervical cancer cells stimulates cellular motility and invasion. Migration correlated with the dynamic formation of cellular protrusions and was dependent upon cell-to-cell contact. While E2-expressing migratory cells were senescent, migration was not a general feature of cellular senescence or cell cycle arrest and was specifically observed in HPV-positive cervical cancer cells. Interestingly, E2-expressing cells not only were themselves motile but also conferred increased motility to admixed HeLa cervical cancer cells. Together, our data suggest that repression of the viral oncogenes by E2 stimulates the motility of E6/E7-targeted cells as well as adjacent nontargeted cancer cells, thus raising the possibility that E2 expression may unfavorably increase the local invasiveness of HPV-positive tumors.  相似文献   

5.
The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells.  相似文献   

6.
Specific types of human papillomaviruses (HPVs) cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA) expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression. Deep sequencing studies combined with qRT-PCR analyses show that E6/E7 silencing significantly affects ten of the 52 most abundant intracellular miRNAs in HPV18-positive HeLa cells, downregulating miR-17-5p, miR-186-5p, miR-378a-3p, miR-378f, miR-629-5p and miR-7-5p, and upregulating miR-143-3p, miR-23a-3p, miR-23b-3p and miR-27b-3p. The effects of E6/E7 silencing on miRNA levels are mainly not dependent on p53 and similarly observed in HPV16-positive SiHa cells. The E6/E7-regulated miRNAs are enriched for species involved in the control of cell proliferation, senescence and apoptosis, suggesting that they contribute to the growth of HPV-positive cancer cells. Consistently, we show that sustained E6/E7 expression is required to maintain the intracellular levels of members of the miR-17~92 cluster, which reduce expression of the anti-proliferative p21 gene in HPV-positive cancer cells. In exosomes secreted by HeLa cells, a distinct seven-miRNA-signature was identified among the most abundant miRNAs, with significant downregulation of let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p and upregulation of miR-21-5p, upon E6/E7 silencing. Several of the E6/E7-dependent exosomal miRNAs have also been linked to the control of cell proliferation and apoptosis. This study represents the first global analysis of intracellular and exosomal miRNAs and shows that viral oncogene expression affects the abundance of multiple miRNAs likely contributing to the E6/E7-dependent growth of HPV-positive cancer cells.  相似文献   

7.
Cervical cancer (CC) constitutes a major women health problem. Clinical, molecular, and epidemiological investigations have identified persistent infection with high risk human papillomavirus (HR-HPV) as the major cause of CC. HR-HPVs lead to development of cervical carcinoma, predominantly through the action of E5, E6 and E7 viral oncoproteins. After HR-HPV infection, viral proteins employ strategies to modulate apoptosis. The E2 viral protein induces apoptosis in both normal and HPV-transformed cells through activation of caspase-8. The E5 protein can impair CD95L- and TRAIL-mediated apoptosis, which suggests that it may prevent apoptosis at early stages of viral infection. E6 inhibits apoptosis through the proteolytic inactivation of pro-apoptotic proteins such as p53, FADD, or procaspase-8, employing the ubiquitin proteasome pathway, or through interactions with proteins that form the death-inducing signaling complex (DISC) such as TNF-R1. On the other hand, E7 oncoprotein expressing cells are usually predisposed to undergo apoptosis. Useful targets for therapeutic strategies would interfere with expression or function of HR-HPV proteins to eliminate cells that express viral oncoproteins. In this review, we summarize the available data on the interaction of early HPV proteins with cellular factors that promote cell death, and the functional consequences of these interactions on apoptosis.  相似文献   

8.
9.
Control of interferon signaling in human papillomavirus infection   总被引:9,自引:0,他引:9  
Human papillomaviruses (HPV) infect mucosal and cutaneous epithelium resulting in several types of pathologies, most notably, cervical cancer. Persistent infection with sexually transmitted oncogenic HPV types represents the major risk factor for the development of cervical cancer. The development of HPV-associated cervical cancer has been closely linked to the expression of the viral oncogenes E6 and E7 in the tumor cells. The major viral oncoproteins, E6 and E7, target the cellular tumor suppressor gene products p53 and Rb, respectively. As detailed within, these interactions result in the stimulation of proliferation and the inhibition of apoptosis, thus representing major oncogenic insults to the infected cell. In addition to mediating transformation, the E6 and E7 genes also play significant roles in altering the immune response against infected cells by suppressing interferon (IFN) expression and signaling. At the clinical level, IFNs have been used in the treatment of HPV-associated cervical intraepithelial neoplasia (CIN) or cervical cancers with mixed results. The success of the treatment is largely dependent on the subtype of HPV and the immune response of the patients. Despite this inefficiency, the increasing knowledge about the regulation of IFN signaling pathways at molecular level may hold a promise for the use of new therapeutic strategies against HPV infection. Studies on the regulation of the function of IFN-inducible gene products by the E6 and E7 may lead to the development of new therapeutic approaches based on strategies that modify the function of the HPV oncoproteins and restore IFN-signaling pathways through endogenous control mechanisms.  相似文献   

10.
Cervical cancer cells express high-risk human papillomavirus (HPV) E6 and E7 proteins, and repression of HPV gene expression causes the cells to cease proliferation and undergo senescence. However, it is not known whether both HPV proteins are required to maintain the proliferative state of cervical cancer cells, or whether mutations that accumulate during carcinogenesis eliminate the need for one or the other of them. To address these questions, we used the bovine papillomavirus E2 protein to repress the expression of either the E6 protein or the E7 protein encoded by integrated HPV18 DNA in HeLa cervical carcinoma cells. Repression of the E7 protein activated the Rb pathway but not the p53 pathway and triggered senescence, whereas repression of the E6 protein activated the p53 pathway but not the Rb pathway and triggered both senescence and apoptosis. Telomerase activity, cyclin-dependent kinase activity, and expression of c-myc were markedly inhibited by repression of either E6 or E7. These results demonstrate that continuous expression of both the E6 and the E7 protein is required for optimal proliferation of cervical carcinoma cells and that the two viral proteins exert distinct effects on cell survival and proliferation. Therefore, strategies that inhibit the expression or activity of either viral protein are likely to inhibit the growth of HPV-associated cancers.  相似文献   

11.
Several characteristics make human papillomavirus (HPV) amenable to vaccination. Anti-HPV-directed vaccines are based on the observation that HPV E6 and E7 oncoproteins are constitutively expressed in HPV-positive cervical cancer and may serve as tumor rejection antigens. Five HPV types (16, 18, 31, 33, and 45) account for 80% of cervical cancer. Until now, the type of immune response capable of mediating an effective antitumor response has not been defined. In order to define the anticancer-directed immune response in situ, we characterized CD4(+) and CD8(+) sorted T cells from peripheral blood lymphocytes, freshly harvested tumor tissue, and tumor-infiltrating lymphocytes (TIL) from a patient with cervical cancer. The HLA-DR-restricted CD4(+) T-cell receptor VB16-, VA10-, VA21-, and VA22-positive CD4(+) T-cell line derived from TIL recognizes autologous HLA-DR*0402(+) (HPV33(+)) cervical cancer cells, as determined by gamma interferon secretion. Testing of different peptides spanning the E7 gene revealed that the HPV33(73-87) peptide ASDLRTIQQLLMGTV represents the immunodominant epitope which can also be presented by the DR*0401 allele to TIL. Such major histocompatibility complex class II-presented peptides represent attractive candidates to augment T-cell responses directed against autologous tumor cells.  相似文献   

12.
Infection of cervical epithelial cells with certain high risk HPV genotypes is thought to play an etiologic role in the development of cervical cancer. In particular, HPV type 16 and 18 early protein 6 (E6) is thought to contribute to epithelial transformation by binding to the tumor suppressor protein p53, targeting it for rapid proteolysis, resulting in loss of its cell cycle arrest and apoptosis-inducing activities. Recent data indicate that factors responsible for triggering apoptosis reside in the cytoplasm of cells, and not in the nucleus. In particular, the findings that mitochondria are required in certain cell-free models for induction of apoptosis and that bcl-2 is localized to mitochondria have focused attention on the role of the mitochondrial membrane permeability transition (MPT) in apoptosis. Here we present data to indicate that HPV 16 E6 expression sensitizes cells to MPT-induced apoptosis. We also report that HPV 16 E6 sensitization of cells to MPT-induced apoptosis occurs only in the presence of wildtype (wt) p53 expression. The extent of apoptosis induced by atractyloside (an inducer of the MPT) in normal, temperature-sensitive (ts) p53, and HPV-16 E6 transfected J2-3T3 cells, and the HPV expressing cervical carcinoma cell lines SiHa, Hela and CaSki was determined. C33A cells, which express mutant p53 but not HPV, were also exposed to atractyloside in the presence or absence of HPV 16 E6 expression. Dose-dependent apoptosis induced by atractyloside in normal J2-3T3 cells and cervical carcinoma cells was measured by loss of cell viability, nuclear fragmentation and DNA laddering. The sensitivity of cells to atractyloside-induced apoptosis was found to be: HPV 16 E6-J2-3T3 > CaSki > normal-J2-3T3 cells ≈ ts p53-J2-3T3 ≈ vector-J2-3T3 cells > Hela > SiHa > C33A ≈ C33A 16 E6. Cyclosporin A (CsA), an inhibitor of the MPT, and ICE-I, a protease inhibitor, provided protection against atractyloside-induced apoptosis. These findings indicate that: 1) high risk HPV 16 E6 protein is capable of sensitizing cells to apoptosis; 2) HPV 16 E6 sensitization of cells to atractyloside-induced apoptosis occurs in a p53-dependent fashion; 3) the target of HPV 16 E6 sensitization of cells to atractyloside-induced apoptosis is the mitochondria; and 4) HPV 16 E6 sensitization of cells to atroctycoside-induced apoptosis involves an ICE-like protease-sensitive mechanism, regulating the onset of the MPT. These findings constitute the first evidence that mitochondria play a role in HPV 16 E6 modulation of apoptosis. J. Cell. Biochem. 66:245-255. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The aetiology of cervical cancer has been primarily attributed to human papillomaviruses (HPVs). These are characterized by the persistent expression of the two oncogenes, E6 and E7. Experimental studies show that E6 and E7 genes of the high risk HPVs deregulate key cell cycle controls. Recent work has uncovered new cellular partners for these proteins that throw light on many of the pathways and processes in which these viral proteins intervene. This review focuses on the regulation of host proteins by the viral oncoproteins and consequence of such interactions on cell survival, proliferation, differentiation and apoptosis.  相似文献   

14.
Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.  相似文献   

15.
The ubiquitin-protein ligase E6-AP is utilized by the E6 oncoprotein of human papillomaviruses (HPVs) associated with cervical cancer to target the tumor suppressor p53 for degradation. Here, we report that downregulation of E6-AP expression by RNA interference results in both the accumulation of p53 and growth suppression of the HPV-positive cervical cancer cell lines HeLa and SiHa. In addition, HeLa cells, in which p53 expression was suppressed by RNA interference, are significantly less sensitive to the downregulation of E6-AP expression with respect to growth suppression than parental HeLa cells. These data indicate that the anti-growth-suppressive properties of E6-AP in HPV-positive cells depend on its ability to induce p53 degradation.  相似文献   

16.
Human papillomavirus type 18 (HPV18) is frequently detected in cervical cancer cells. The viral proteins E6 and E7 are expressed consistently and have oncogenic activities. The E7 protein binds to a tumor suppressor, the retinoblastoma gene product (pRB), however, leading to the stabilization of tumor suppressor, p53 protein. On the other hand, another viral product, E6, forms complexes with p53 and abrogates its function, resulting in tumor progression. These facts imply that the E6 oncogene is one of the ideal targets for directed gene therapy in HPV-positive cervical cancer. In this study, we tried photodynamic antisense regulation of the antiapoptotic E6 expression using a photocross-linking reagent, 4,5',8-trimethylpsoralen, conjugated oligo(nucleoside phosphorothioate) (Ps-S-Oligo). This photodynamic antisense strategy effectively elicited the apoptotic death of HPV18-positive cervical cancer cells through the selective repression of E6 mRNA and consequent stabilization of p53 protein. E7-mediated signals potentially activated the p53 function and mobilized the p53 pathway to deliver pro-apoptotic signals to the cancer cells, leading to the suppression of in vivo tumorigenesis. An extremely low concentration of cisplatin in addition to Ps-S-Oligos further up-regulated p53 activity, provoking massive apoptotic induction. These results suggest that the photodynamic antisense strategy has the great therapeutic potential in HPV-positive cervical cancers.  相似文献   

17.
Over the recent few years rutin has gained wider attention in exhibiting inhibitory potential against several oncotargets for inducing apoptotic and antiproliferative activity in several human cancer cells. Several deregulated signaling pathways are implicated in cancer pathogenesis. Therefore we have inclined our research towards exploring the anticancerous efficacy of a very potent phytocompound for modulating the incontinent expression of these two crucial E6 and E7 oncogenes. Further, inhibitory efficacy of rutin against human papillomavirus (HPV)-E6 and E7 oncoproteins in cervical cancer has not been elucidated yet. This research addresses the growth inhibitory efficacy of rutin against E6 and E7 oncoproteins in HeLa cells, which is known to inactivate several tumor suppressor proteins such as p53 and pRB. Rutin treatment exhibited reduced cell viability with increased cell accumulation in G0/G1 phase of cell cycle in HeLa cell lines. Additionally, rutin treatment has also led to down-regulation of E6 and E7 expression associated with an increased expression of p53 and pRB levels. This has further resulted in enhanced Bax expression and decreased Bcl-2 expression releasing cytochrome c into cytosol followed by caspase cascade activation with cleavage of caspase-3, caspase-8 and caspase-9. Further, in silico studies have also supported our in vitro findings by exhibiting significant binding energy against selected target oncoproteins. Therefore, our research findings might recommend rutin as one of the potent drug candidate in cervical cancer management via targeting two crucial oncoproteins associated with viral progression.  相似文献   

18.
19.
Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca2+ leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号