共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pentobarbital, chloralose, and urethane on IPSPs arising in auditory cortical neurons in response to electrical stimulation of geniculocortical fibers was studied in experiments on cats immobilized with D-tubocurarine. Pentobarbital (60–80 mg/kg body weight, intraperitoneally) sharply reduced the number of neurons responding by spikes to geniculocortical stimulation. Only short-latency responses remained. The number of neurons responding with IPSPs was unchanged. Pentobarbital increased the duration of the IPSPs by 1.5–2 times and shortened their latent periods. Under the influence of chloralose (60 mg/kg, intraperitoneally) the number of responses of EPSP—spike—IPSP type was increased and the duration of the IPSPs also was increased by 3–4 times. The latent period of the primary IPSPs was shortened. Unlike pentobarbital and chloralose, urethane (1000 mg/kg, intravenously) reduced the duration of the IPSPs to 30 msec. About 2% of IPSPs recorded before anesthesia had a latent period of 1.0–1.5 msec. Under the influence of anesthesia the relative number of these IPSPs increased to 5.7%. It it postulated that they are monosynaptic. The mechanism of action of general anesthetics on the cortical inhibitory system is discussed. 相似文献
2.
In experiments on immobilized anesthetized rats, we intracellularly recorded neuronal responses in the motor cortex before and after application of picamilon (PM) on the cortical surface; the responses were evoked by intracortical stimulation. Aplications of PM in the 5, 20, 50, and 100 μM concentrations noticeably increased, while that in the 10 μM concentration decreased the amplitude of IPSP in the cortical neurons. Probable mechanisms of the effect of PM on a cellular level are discussed. 相似文献
3.
Acute experiments on immobilized cats lightly anesthetized with pentobarbital showed that application of strychine to the cortical surface inhibits slow negative potentials arising during direct and primary responses of the sensomotor cortex and corresponding IPSPs in pyramidal neurons. Iontophoretic applications of strychine blocks predominantly the early component of the IPSP, during which the input resistance under normal conditions is significantly less than during the late component of the IPSP, indicating that these components differ in their genesis. It is concluded that individual components of cortical evoked potentials have a common genesis, and that the slow negative potential is the dipole reflection of the IPSP in pyramidal neurons; the early component of the IPSP, moreover, is generated as a result of activation of axo-somatic inhibitory synapses, whereas the late component is generated as a result of activation of axo-dendritic synapses. The mediators in these inhibitory synapses may be different.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 480–487, July–August, 1984. 相似文献
4.
Spikes were recorded extracellularly and IPSPs intracellularly from auditory cortical neurons of cats immobilized with D-tubocurarine in response to stimulation of geniculo-cortical fibers. Fibers whose stimulation induces IPSPs in auditory cortical neurons mainly have low thresholds. When two stimuli, each of which separately evoked an IPSP of maximal amplitude, were applied to them the shortest interval at which the second stimulus evoked an effect was 2.5–3 msec. This effect consisted of an increase in the duration of the integral IPSP, the amplitude of which either remained unchanged or increased under these circumstances by only 5–10%. The interval at which a separate IPSP appeared in response to the second stimulus depended on the duration of the ascending phase of the IPSP and varied from 4 to 22 msec for different neurons. The amplitude of the second IPSP in this case depended on the interval between stimuli. Under moderately deep pentobarbital anesthesia the number of neurons responding to stimulation of the geniculo-cortical fibers by spikes fell sharply but the number of neurons responding by primary IPSPs remained almost unchanged. Under very deep pentobarbital anesthesia, when spike responses of the cortical neurons completely disappeared, the IPSPs also were completely suppressed. It is concluded that inhibitory neurons of the auditory cortex are excited by thick low-threshold fibers, they have a short refractory period, and they are resistant to the narcotic action of pentobarbital. 相似文献
5.
E. V. Topol’nik 《Neurophysiology》1999,31(2):144-146
With the use of an intracellular recording technique, in experiments on immobilized anesthetized rats, we studied intracortical stimulation (ICS)-evoked responses of the motor cortex neurons before and after applications of pantogam (PG) and GABA ascorbinate (A-GABA) on the cortical surface. Application of PG prolonged the IPSP, suppressed the background spike activity (BA), and increased the membrane potential level of the neurons studied. Applications of A-GABA in low and medium concentrations (below 50 μM) increased the amplitude and duration of inhibitory responses, while that in high concentrations (50 μM and more) evoked depolarization of the neuronal membrane with concurrent intensification of the BA. Probable cellular mechanisms of the effects of the above drugs are discussed. 相似文献
6.
Single intramural stimulation of the atropinized muscle strip of the guinea pig stomach by square pulses was accompanied by the formation of inhibitory postsynaptic potentials (IPSPs) in the muscle cells and by relaxation of the strip. The mean latent period of the IPSPs was 150±15 msec, and the time for its amplitude to rise and fall was 150±15 and 375±92 msec respectively. The latent period of the onset of relaxation of the muscle strip was 1850±230 msec. The amplitude and rate of rise of these IPSPs increased with an increase in the strength of stimulation. This shows that the same gastric muscle cell is under the inhibitory influence not of one, but of several nerve fibers. The effectiveness of synaptic transmission was largely dependent on the character of the preceeding stimulation. For instance, in response to repeated stimulation with short intervals facilitation was observed, but after repetitive stimulation had ended posttetanic depression followed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 216–222, March–April, 1972. 相似文献
7.
B. V. Bakharev 《Biophysics》2008,53(5):448-451
A nonlinear dependence of the amplitude of excitatory postsynaptic potentials on the membrane potentials was derived. The existence of a region of oscillation stability with an increase in the mean value of nonspecific afferent inflow was demonstrated. A high-frequency oscillation component (40–60 Hz) appears with a pronounced increase in the afferent inflow; this can cause instability in oscillations and abnormal brain activity. 相似文献
8.
In computer-experiments using the interactive program, CRONA, and using data from natural experiments that measured the reversal potential of slow (long-term) inhibitory postsynaptic potentials (slow IPSPs), we determined the probable location of the region of potassium-conducting synapses that are responsible for their generation. Parameters such as the geometric dimensions of neuronal dendritic branches and the intracellular concentration of K+ were studied for their effect on the determination of this region. It is concluded that these synaptic inputs are non-somatic, and that allowing for the variability of the initial parameters they probably lie on the apical dendrites at a distance between 110 and 460 µm from the soma.Dnepropetrovsk State University. A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 738–745, November–December, 1991. 相似文献
9.
James R. Howe Bernd Sutor Walter Zieglgänsberger 《Cellular and molecular neurobiology》1987,7(1):1-18
The characteristics of long-duration inhibitory postsynaptic potentials (1-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from an in vitro slice preparation. Stimulation with suprathreshold intensities evoked 1-IPSPs with typical durations of 600-900 msec at resting membrane potential. Conductance increases of 15-60% were measured at the peak amplitude of 1-IPSPs (150-250 msec poststimulus). The duration of the conductance increases during 1-IPSPs displayed a significant voltage dependence, decreasing as the membrane potential was depolarized and increasing with hyperpolarization. The reversal potential of 1-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that 1-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance. 1-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during 1-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes. 1-IPSPs are not blocked by bicuculline but are blocked by baclofen. 相似文献
10.
Temporal precision in spike timing is important in cortical function, interactions, and plasticity. We found that, during periods of recurrent network activity (UP states), cortical pyramidal cells in vivo and in vitro receive strong barrages of both excitatory and inhibitory postsynaptic potentials, with the inhibitory potentials showing much higher power at all frequencies above approximately 10 Hz and more synchrony between nearby neurons. Fast-spiking inhibitory interneurons discharged strongly in relation to higher-frequency oscillations in the field potential in vivo and possess membrane, synaptic, and action potential properties that are advantageous for transmission of higher-frequency activity. Intracellular injection of synaptic conductances having the characteristics of the recorded EPSPs and IPSPs reveal that IPSPs are important in controlling the timing and probability of action potential generation in pyramidal cells. Our results support the hypothesis that inhibitory networks are largely responsible for the dissemination of higher-frequency activity in cortex. 相似文献
11.
Single-channel properties of glycine receptors have been characterized so far only in cultured neurons. To characterize the glycine receptor channels in situ, we applied the patch-clamp technique to spinal neurons in slice preparations. Glycine-gated, single-channel currents were recorded in outside-out patches excised from spinal neurons. In the falling phase of glycinergic inhibitory synaptic currents, single-channel currents were resolved as discrete steps. In both cases, the glycine-gated channels showed similar multiple conductance levels. These results suggest that the receptor channel properties are indistinguishable in the synaptic and extrasynaptic sites. We conclude that multiple conductance states of a receptor channel are the native feature of the glycine receptor in situ. 相似文献
12.
13.
V A Dyatlov 《Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol.》1991,98(2-3):271-274
1. Intracellular recordings were made from identified and non-identified neurons in perioesophageal ganglionic ring with buccal ganglia of the mollusc, Helix pomatia. The influence of oxytocin (OXT) on neuronal integration: space and temporal summations of postsynaptic potentials (PSPs) in various neurons was investigated. The obtained data indicated that these PSPs were cholinergic PSPs. 2. Ten minute exposure to 10(-8) M OXT had no effects on the resting membranes, but triggered secondary mechanisms, which lead to enhancement of the excitatory PSP (EPSR) amplitudes and the decrease of the decay time constant (tau EPSR) obtained from the falling phase of the EPSP. 3. The enhancement of the EPSP amplitude and the decrease of tau EPSP after OXT application evoked the appearance of action potential under space summation of two spontaneous EPSPs and made easier the appearance of action potential under temporal summation of EPSPs produced by paired afferent stimuli, when the corresponding interstimuli interval was smaller than tau EPSP in the presence of OXT. 4. Ten minute exposure to 10(-8) M OXT made the integrated amplitude of the excitatory acetylcholine response and the inhibitory dopamine response in the neuron E5 more positive only when the interval between applications of these mediators was smaller than the time constant of desensitization of acetylcholine receptors in the presence of OXT. 5. The pharmacological studies showed that drugs, which elevate intracellular cyclic AMP levels, mimicked the influence of OXT on integration of PSPs in the investigated neurons. 相似文献
14.
Synchronous activation of dopamine neurons, for instance upon presentation of an unexpected rewarding stimulus, results in the release of dopamine from both terminals in projection areas and somatodendritic sites within the ventral midbrain. This report describes an inhibitory postsynaptic current (IPSC) that was elicited by dopamine in slices from mouse midbrain. The IPSC was tetrodotoxin sensitive, calcium dependent, and blocked by a D2 receptor antagonist. Inhibition of monoamine transporters prolonged the IPSC, indicating that the time course of dopamine neurotransmission is tightly regulated by reuptake. Changing the stimulus intensity altered the amplitude but not the time course of the IPSC, whose onset was faster than could be reproduced with iontophoresis. The results indicate a rapid rise in dopamine concentration at the D2 receptors, suggesting that dopamine that is released by a train of action potentials acts in a localized area rather than in a manner consistent with volume transmission. 相似文献
15.
I. V. Mel'nik 《Neurophysiology》1991,23(4):311-318
Decay of inhibitory postsynaptic currents (IPSC) was analyzed in dissociated culture of chick embryo spinal cord. Differences in the kinetic characteristics of low-amplitude and giant IPSC were revealed. Decay of currents in the first group was single-exponential, while decay in the second group was double-exponential. The time constant of single-exponential current decay increased during membrane depolarization and decreased during rise in temperature of the solution. Decay of the double-exponential currents depended little on potential, while temperature changes acted only on its slow component. Strychnine in submaximum concentrations produced not only a decrease in amplitude of giant IPSC, but also a deceleration of decay due to the slow component. The regularity of these phenomena suggests that decay of giant IPSC, as distinguished from that of low-amplitude currents, is determined by removal of transmitter from the synaptic cleft.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 4, pp. 427–435, July–August, 1991. 相似文献
16.
The present communication concerns with the analysis of elementary and the compound excitatory postsynaptic potentials (eEPSPs and cEPSPs) recorded by intracellular microelectrode from an identified defensive command neuron of the snail Helix lucorum. The eEPSPs were evoked by single presynaptic action potentials (APs) elicited by cationic current injection into one of the identified sensory neurons synapsing on the respective command neuron. The cEPSPs were elicited by local brief tactile stimuli on the skin or internal organs. It was shown that the cEPSPs amplitudes depend mainly on the number of activated sensory neurons. Compound EPSPs depend also on frequency and the number of APs in the bursts occurring in a single neuron. Presynaptic APs having frequency 2-10 Hz evoke high frequency depression of that eEPSPs after an interval is followed by post-tetanic potentiation of single eEPSPs. Preceding stimulation of a pneumostom area facilitates the cEPSPs elicited by repeated stimulation of viscera. The eEPSPs from the same visceral area demonstrate no heterosynaptic facilitation in experiments with double parallel intracellular recording from responsive sensory and command neurons. The different types of the eEPSPs plasticity are discussed according to their contribution cEPSPs plastic changes. 相似文献
17.
R Bartesaghi T Gessi F Volta 《Bollettino della Società italiana di biologia sperimentale》1979,55(24):2561-2567
Evoked potentials, represented by population spikes and slow waves, have been recorded from the subiculum, along its whole dorso-ventral extent, following postsynaptic activation and discharge of hippocampal pyramidal neurons. These potentials can be associated with synaptic excitatory effects generated on radially oriented neurons by hippocampal impulses reaching the subiculum at any dorso-ventral level, according to a segmental organization. 相似文献
18.
D. A. Sibarov P. A. Abushik A. E. Bolshakov T. V. Karelina I. I. Krivoi S. M. Antonov 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2014,8(2):169-177
In this study we demonstrate that the primary culture of rat cortical neurons is a convenient model for investigations of epileptogenesis mechanisms and specifically, of the postsynaptic epileptiform currents (EC) reflecting periodical asynchronous glutamate release. In particular, we have revealed that in primary culture of cortical neurons EC can appear spontaneously or can be triggered by the withdrawal of magnesium block of NMDA receptor channels or by shutting down GABAergic inhibition. EC were found to depend on intracellular calcium oscillations. The secondary calcium release from intracellular stores was needed for EC synchronization. EC were suppressed by the influences causing either neuronal calcium overload or decrease of intracellular calcium concentration. Calcium entry into neurons in the case of NMDA receptor hyperactivation or in the case of calcium ionophore ionomycin treatment eliminated EC. The suppression of EC also occurred after a decrease of intracellular calcium concentration induced by BAPTA loaded into the neurons or by stimulation of calcium removal from cells via Na+/Ca2+ exchanger by 1 nM ouabain. Partial dependence of EC on action potential generation was found. Thus, EC in neurons are activated by intracellular periodic calcium waves within a limited concentration window. 相似文献
19.
20.
V. E. Lopantsev 《Neurophysiology》1992,24(6):459-464
Intracellular responses of neurons of the suprasylvian fissure to intracortical stimulation before and during topical cortical strychnine application was studied in experiments on immobilized, unanesthetized cats (a local anesthetic was used). Untreated cortical neurons responded to intracortical stimulation with a monosynaptic excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). Application of strychnine evoked epileptiform population activity and paroxysmal depolarizations of neuronal membrane potentials (MPs), followed by hyperpolarization. Increased hyperpolarizations, and the prolonged duration of their summation were responsible for an increased MP and reduced or abolished tonic spike activity. Intracellular application (as a result of diffusion from the microelectrode) of ethyleneglycoltetraacetate (EGTA) that blocked the calcium-dependent potassium membrane conductance (gK(Ca)) abolished the hyperpolarization. The development of epileptiform activity was accompanied by reduction of the IPSP, and an increase in the monosynaptic EPSP. The role of gK(Ca) and postsynaptic inhibition in epileptogenesis is discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 684–691, November–December, 1992. 相似文献