首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Summary Acetobacter xylinum contains a complex system of plasmid DNA molecules. Plasmids of molecular weights or copy numbers different from the original wild-type, are found in different types of mutants. Restriction endonuclease digestion and DNA/DNA hybridization analysis, showed that the plasmids often contained partly, but not completely the same DNA sequences. Two of these plasmid classes were analysed in more detail, and could be shown to differ in size by about 5 kb. Hybridization analysis using cloned DNA fragments as probes, showed that sequences lacking in the smallest plasmid were still present in a DNA fraction co-migrating with linearized chromosomal DNA. In addition, at least part of the DNA in the smallest plasmid was present both in the plasmid and chromosomal DNA fraction. Analysis of a particular strain containing an insertion of transposon Tn1, also indicated the existence of complex interactions between plasmids and chromosomal DNA. Together with experiments on conjugative transfer and curing of the plasmids, the results indicate that at least part of the genetic system of A. xylinum is unusual when compared to that of other genetically characterized bacteria.  相似文献   

2.
Kodama Y  Fujishima M 《Protoplasma》2007,231(1-2):55-63
Summary. Paramecium bursaria cells harbor several hundred symbiotic algae in their cytoplasm. Algae-free cells can be reinfected with algae isolated from algae-bearing cells or cultivated Chlorella species through the digestive vacuoles. To determine the relationship between the infectivity of various Chlorella species and the nature of their cell wall components, algae-free P. bursaria cells were mixed with 15 strains of cultivated Chlorella species and observed for the establishment of endosymbiosis at 1 h and 3 weeks after mixing. Only 2 free-living algal strains, C. sorokiniana C-212 and C. kessleri C-531, were maintained in the host cells, whereas free-living C. sorokiniana C-43, C. kessleri C-208, C. vulgaris C-27, C. ellipsoidea C-87 and C-542, C. saccharophila C-183 and C-169, C. fusca var. vacuolata C-104 and C-28, C. zofingiensis C-111, and C. protothecoides C-150 and C-206 and the cultivated symbiotic Chlorella sp. strain C-201 derived from Spongilla fluviatilis could not be maintained. These infection-incapable strains could escape from the host digestive vacuole but failed to localize beneath the host cell membrane and were eventually digested. Labeling of their cell walls with Alexa Fluor 488-conjugated wheat germ agglutinin, GS-II, or concanavalin A, with or without pretreatment with 0.4 N NaOH, showed no relationship between their infectivity and the stainability with these lectins. Our results indicate that the infectivity of Chlorella species for P. bursaria is not based on the sugar residues on their cell wall and on the alkali-insoluble part of the cell wall components, but on their ability to localize just beneath the host cell membrane after escaping from the host digestive vacuole. Correspondence and reprints: Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

3.
Gregarious koinobiont parasitoids attacking a range of host sizes have evolved several mechanisms to adapt to variable host resources, including the regulation of host growth, flexibility in larval development rate, and adjustment of clutch size. We investigated whether the first two mechanisms are involved in responses of the specialist gregarious parasitoid Microplitis tristis Nees (Hymenoptera: Braconidae) to differences in the larval weight and parasitoid load of its host Hadena bicruris Hufn. (Lepidoptera: Noctuidae). In addition, we examined the effects of parasitism on food consumption by the host. Parasitoids were offered caterpillars of different weight from all five instars, and parasitoid fitness correlates, including survival, development time, and cocoon weight, were recorded. Furthermore, several host growth parameters and food consumption of parasitized and unparasitized hosts were measured. Our results show that M. tristis responds to different host weights by regulating host growth and by adjusting larval development rate. In hosts with small weights, development time was increased, but the increase was insufficient to prevent a reduction in cocoon weight, and as a result parasitoids experienced a lower chance of successful eclosion. Cocoon weight was negatively affected by parasitoid load, even though host growth was positively affected by parasitoid load, especially in hosts with small weights. Later instars were more optimal for growth and development of M. tristis than early instars, which might reflect an adaptation to the life‐history of the host, whose early instars are usually concealed and inaccessible for parasitism on its food plant, Silene latifolia Krause (Caryophyllaceae). Parasitism by M. tristis greatly reduced total host food consumption for all instar stages. Whether plants can benefit directly from the attraction of gregarious koinobiont parasitoids of their herbivores is a subject of current debate. Our results indicate that, in this system, the attraction of a gregarious koinobiont parasitoid can directly benefit the plant by reducing the number of seeds destroyed by the herbivore.  相似文献   

4.
Swensen  Susan M.  Mullin  Beth C. 《Plant and Soil》1997,194(1-2):185-192
Current taxonomic schemes place plants that can participate in root nodule symbioses among disparate groups of angiosperms. According to the classification scheme of Cronquist (1981) which is based primarily on the analysis of morphological characters, host plants of rhizobial symbionts are placed in subclasses Rosidae and Hamamelidae, and those of Frankia are distributed among subclasses Rosidae, Hamamelidae, Magnoliidae and Dilleniidae. This broad phylogenetic distribution of nodulated plants has engendered the notion that nitrogen fixing endosymbionts, particularly those of actinorhizal plants, can interact with a very broad range of unrelated host plant genotypes. New angiosperm phylogenies based on DNA sequence comparisons reveal a markedly different relationship among nodulated plants and indicate that they form a more coherent group than has previously been thought (Chase et al., 1993; Swensen et al., 1994; Soltis et al., 1995). Molecular data support a single origin of the predisposition for root nodule symbiosis (Soltis et al., 1995) and at the same time support the occurrence of multiple origins of symbiosis within this group (Doyle, 1994; Swensen, 1996; Swensen and Mullin, In Press).  相似文献   

5.
The availability of the myeloid hemopoietic growth factors (HGF) granulocyte- and granulocyte/macrophage-colony stimulating factor (G-CSF and GM-CSF) has enhanced the therapeutic index of high-dose chemotherapeutic antitumoral regimens (HDCT), as well as the rate of severe damage to immune competence. We investigated some immune functions before, during and after one course of HDCT for poor-risk breast cancer and compared the effects of G-CSF and GM-CSF on the immune recovery. They exerted different influences on the functions we examined and showed distinctive patterns of both qualitative and quantitative in vivo activities on the immune system. The main findings were that (a) granulocyte and lymphocyte recovery rates were faster in the patients receiving G-CSF; (b) looking at the lymphocyte compartment, this difference was restricted to the CD3+/CD8+ and CD56+ lymphocyte subsets; (c) the reconstitution rate of CD19+ lymphocytes was slow in both groups; (d) at the end of follow-up HLA-DR expression by CD3+ lymphocytes was higher in the GM-CSF group; (e) the lymphocyte proliferative capacity was restored at a faster rate in the GM-CSF group, whereas cytotoxic activities recovered better in the G-CSF group; (f) the early repopulating phase was characterized by higher interleukin-6 serum levels in the GM-CSF group. Overall, GM-CSF seemed to exert an earlier effect on all T lymphocyte subsets, preventing them from a complete drop during the long-lasting “nadir” of the cell count, whereas G-CSF appeared to boost them strongly, though a few days later, hastening their final recovery. The distinct pattern of the cytokine cascade induced by each factor, consistent with the different functional changes, seemed to account for the peculiarities of their immune modulations. Received: 4 August 1998 / Accepted: 30 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号