首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of Zn, P, N and CaCO3 on tryptophan concentration in rice grain were studied in greenhouse at Haryana Agricultural University. Zinc application upto 20 ppm increased tryptophan concentration in rice grain. Zn-EDTA gave highest increase followed by ZnSO4 and then ZnO. Liming at the rate of 4 and 8 per cent decreased tryptophan concentration significantly. Phosphorus application upto 100 ppm also decreased tryptophan significantly but Zn in combination with P increased tryptophan and overcame negative effect of P. Nitrogen application upto 120 ppm increased tryptophan concentration. There was positive interaction between Zn and N. Ammonium sulphate gave highest tryptophan followed by ammonium nitrate and then urea. The tryptophan concentration ranged between 766 ppm and 2011 ppm in paddy grain. The lowest tryptophan concentration was in the plants treated with 8 per cent lime in absence of added Zn and highest with 10 ppm Zn through Zn-EDTA. Department of Soils.  相似文献   

2.
A study was conducted in a screen house in pots on a sandy loam soil deficient in Zn. Salinity was induced by adding 44, 88 and 132 me/l of chloride and sulphate salts in the saturation extract. To these treatments, 0, 5 and 10 ppm Zn were added as ZnSO4·7H2O or Zn-EDTA. The results indicated that the yield of soybean shoot was lowest at the highest salinity level and highest at the lowest level. Shoot yield improved markedly with Zn application. Both sources of Zn were equally effective in augmenting crop yields. Yields were low in Cl-salinity when compared with equivalent levels of SO4-salinity. Application of ZnSO4·7H2O produced higher yields in SO4-dominant salinity. Zinc content increased and Zn uptake decreased with increase in Cl-salinity regardless of Zn sources. In SO4-salinity, ZnSO4·7H2O did not influence the Zn content, but uptake was suppressed with increase in SO4-salinity. Increasing rates of SO4-salinity enhanced Zn content in the presence of Zn-EDTA.  相似文献   

3.
为探讨Zn、B配施对鸡血藤(Spatholobus suberectus)黄酮类化合物积累的影响,采用营养液叶面喷施,对其总黄酮含量、可溶性蛋白质和PAL活性的变化进行研究。结果表明,Zn、B配施的鸡血藤总黄酮含量、可溶性蛋白质含量、PAL活性增加,其中施用50 mg L–1 Zn SO4+10 mg L–1 Na_2B_4O_7·10H_2O鸡血藤的可溶性蛋白质含量最高,达0.89%;施用25 mg L–1Zn SO4+50 mg L–1 Na2B4O7·10H2O鸡血藤的总黄酮含量和PAL活性最高,分别为4.65%、29.47 U g–1min–1。因此,合理配施Zn、B能促进鸡血藤黄酮类化合物的积累。  相似文献   

4.
This study was designed to determine the effect of zinc on the biological half-lives of 65Zn in whole body and liver and on distribution of 65Zn in different organs of rats following nickel toxicity. Sprague-Dawley (SD) rats received either nickel in the form NiSO4·6H2O at a dose of 800 mg/L in drinking water, zinc in the form of ZnSO4·7H2O at a dose of 227 mg/L in drinking water, and nickel plus zinc or drinking water alone for a total duration of 8 wk. All of the rats were injected with a tracer dose of 0.37 MBq 65Zn at the end of the treatment period. The effects of different treatments were studied on biological half-lives of 65Zn in whole body and liver and on the distribution of 65Zn in different organs of rats. In the present study, we have noted that nickel treatment to normal rats caused a significant decrease in the slow component (Tb2) in liver, which improved following zinc supplementation. Nickel administration to normal-diet-fed animals caused significant lowering in the percentage uptake of 65Zn values in the brain, liver, and intestine. However, the administration of zinc to nickel-treated rats improved the status of 65Zn in different organs. The Tb2 in the liver and the percentage uptake of 65Zn values elevated following zinc supplementation to nickel-treated rats.  相似文献   

5.
Labelled fertilizer N applied to winter wheat as Na15NO3 and (15NH4)2SO4 at a total N dressing of 100kg ha−1 was used in a microplot balance study to investigate the fate of each split fraction at three growth stages: end of tillering, heading and beginning of flowering. Results indicated that while the percentage utilization of the applied N by the grain and total crop increased considerably from the first to the third split application, these values diminished steadily in the straw. Grain recovery values for the first, second and third split applications were 34.2%, 51.5% and 55.7% for the NO3 and 32.3%, 48.4% and 52.5% for the NH4 carrier, respectively. The corresponding recovery values for the whole plant were 54.6%, 67.8% and 69.9% for the NO3 and 51.7%, 63.5% and 66.1% for the NH4 carrier. A greater proportion of the fertilizer N applied at the end of tillering stage was found in the vegetative plant components as compared with the grain. The reverse occurred for the N applied at the heading and at the beginning of the flowering stages. The residual fertilizer N found in the soil amounted to 18.0%, 10.4% and 11.6% of the applied NO3−N and to 22.5%, 12.7% and 15.2% of the applied NH4−N for the respective split applications. No differences were found for each split application between the two carriers as far as the unaccounted fertilizer N was concerned. The losses were 26.6%, 22.3% and 18.6% of the applied N for the three split applications, respectively. The application of fertilizer N did not lead to any increase in soil N uptake by the crop.  相似文献   

6.
Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in hydroponic culture. In experiment 1, mineral assays on 111 accessions grown under sufficient Zn supply (2 μM ZnSO4) revealed a variation range of 23.2–155.9 μg g−1 dry weight (d. wt.) for Zn, 60.3–350.1 μg g−1 d. wt. for Fe and 20.9–53.3 μg g−1 d. wt. for the Mn concentration in shoot. The investigation of tolerance to excessive Zn (800 μM ZnSO4) on 158 accessions, by using visual toxicity symptom parameters (TSPs), identified different levels of tolerance in B. rapa. In experiment 2, a selected sub-set of accessions from experiment 1 was characterized in more detail for their mineral accumulation and tolerance to excessive Zn supply (100 μM and 300 μM ZnSO4). In this experiment Zn tolerance (ZT) determined by relative root or shoot dry biomass varied about 2-fold. The same six accessions were also examined for Zn efficiency, determined as relative growth under 0 μM ZnSO4 compared to 2 μM ZnSO4. Zn efficiency varied 1.8-fold based on shoot dry biomass and 2.6-fold variation based on root dry biomass. Zn accumulation was strongly correlated with Mn and Fe accumulation both under sufficient and deficient Zn supply. In conclusion, there is substantial variation for Zn accumulation, Zn toxicity tolerance and Zn efficiency in Brassica rapa L., which would allow selective breeding for these traits.  相似文献   

7.
Summary In a field experiment, more than 22% increase in the grain yield of corn was obtained by the application of 50 kg ZnSO4/ha. Grain yields were also increased by increasing the level of applied phosphorus. Positive relationship was obtained between Zn and P, the phosphorus treatment increased Zn uptake by grains and vice versa.  相似文献   

8.
‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan   总被引:5,自引:0,他引:5  
A series of on-station trials was implemented between 2002 and 2006 to assess the response of wheat (Triticum aestivum L.) and chickpea (Cicer arietinum) to zinc (Zn) added by soaking seeds (priming) in solutions of ZnSO4 before sowing. Wheat seed was primed for 10 h in 0.3% Zn and chickpea for 6 h in 0.05% Zn. Seed treatments increased the seed concentration in wheat from 27 to 470 mg/kg and in chickpea from 49 to 780 mg/kg. Priming wheat seeds with 0.3% Zn significantly increased the mean shoot dry mass, Zn concentration and Zn uptake of 15-day-old seedlings relative to non-primed controls and seeds primed with water alone. Using 0.4% Zn further increased shoot Zn concentration but depressed shoot dry mass to the level of the non-primed control. In seven trials, mean grain yield of wheat was significantly increased from 2.28 to 2.42 t/ha (6%) by priming with water alone and to 2.61 t/ha (14%) by priming with 0.3% Zn. Mean grain yield of chickpea in seven trials was increased significantly from 1.39 to 1.65 t/ha (19%) by priming seeds with 0.05% Zn. The effect of priming chickpea seeds with water was intermediate (1.49 t/ha) and not statistically separable from the non-primed and zinc-primed treatments. Increased grain yield due to priming in both crops was associated with increases in total biomass but there was no significant effect of priming on harvest index. In addition to increasing yield, priming seeds with Zn also significantly increased grain zinc concentration, by 12% in wheat (mean of three trials) and by 29% in chickpea (one trial) and the total amount of Zn taken up by the grain (by 27% in wheat and by 130% in chickpea). Using ZnSO4 to prime seeds was very cost-effective, with net benefit-to-cost ratios of 75 for wheat and 780 for chickpea. An erratum to this article can be found at  相似文献   

9.
Erenoglu  B.  Nikolic  M.  Römheld  V.  Cakmak  I. 《Plant and Soil》2002,241(2):251-257
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat.  相似文献   

10.
Rice performance, in terms of plant height, productive tillering, yield and N-contents of grain and straw, harvest index (grain yield as a percentage of grain plus straw yields) and relative fertilizer N-use efficiency (kg grain yield/kg fertilizer-N) was enhanced by urea, ZnSO4 and green manuring withAzolla caroliniana. Unlike urea fertilizer, calcium superphosphate increased the rate of azolla field colonization and promoted a thick, healthy dark-green mat of the fern. Response to ZnSO4 was higher in the azolla-free sub-subplots. Application of ZnSO4 corrected symptoms of Zn deficiency in rice but the addition of calcium superphosphate in the absence of Zn intensified the symptoms of Zn deficiency.  相似文献   

11.
A pot study was conducted to compare the effects of amendments (CaHPO4 and cow manure) on growth and uptake of Cd and Zn from contaminated sediments by two wetland plant species, Typha angustifolia and Colocasia esculenta. Contaminated sediments (Cd 33.2 mg kg–1 and Zn 363 mg kg–1) were collected from Mae Tao basin, Mae Sot district, Tak province, Thailand. The experiment consisted of 4 treatments: control (uncontaminated sediment), Cd/Zn, Cd/Zn + 5% CaHPO4, and Cd/Zn + 10% cow manure. Plants were grown for 3 months in the greenhouse. The addition of CaHPO4 resulted in the highest relative growth rate (RGR) and highest Cd accumulation in both T. angustifolia and C. esculenta while the lowest RGR was found in C. esculenta grown in the cow manure treatment. Both plant species had higher concentrations of metals (Cd, Zn) in their belowground parts. None of the amendments affected Zn accumulation. C. esculenta exhibited the highest uptake of both Cd and Zn. The results clearly demonstrated the phytoremediation potential of C. esculenta and the enhancement of this potential by CaHPO4 amendment.  相似文献   

12.

Micronutrient nanoparticles (NPs) are currently an option for chemical fertilization and biostimulation in crops. However, there is little information on the phytotoxic or biostimulatory effects of NPs at low concentrations of some elements, such as Zn. In this study, the effect of low concentrations of Zn oxide (ZnO) NPs on germination, growth variables, and nutritional attributes of lettuce (Lactuca sativa L.) was evaluated in comparison to Zn sulfate. Romaine lettuce seeds were treated with ZnSO4-- × 7H2O and ZnO NPs at Zn molar concentrations of 1 × 10−3, 5 × 10−3, 1 × 10−4, 5 × 10−4, 1 × 10−5, 5 × 10−5, 1 × 10−6, and 5 × 10−6. The seeds treated with ZnSO4 at 5 × 10−6 registered the highest radicle length, 73% more than the control treatment. The seeds treated with ZnSO4 at 5 × 10−3 registered the lowest values, with 50% less than the control treatment. ZnO NPs at 5 × 10−6 significantly increased content of chlorophyll A and B and total phenolics. These results indicate the possible existence of a mechanism related to the intrinsic nanoparticle properties, especially at low concentrations.

  相似文献   

13.
Abstract

This work investigates the relationship between plant growth, grain yield, nutrient acquisition and partitioning in rice (Oryza sativa L.) under elevated CO2. Plants were grown hydroponically in growth chambers with a 12-h photoperiod at either 370 or 700 µmol CO2 mol?1 concentration. Plant dry mass (DM), grain yield and macro- and micronutrient concentrations of vegetative organs and grains were determined. Elevated CO2 increased biomass at tillering, and this was largely due to an increase in root mass by 160%. Elevated CO2 had no effect on total nutrient uptake (N, P, K, Mg and Ca). However, nutrient partitioning among organs was significantly altered. N partitioning to leaf blades was significantly decreased, whereas the N partitioning into the leaf sheaths and roots was increased. Nutrient use efficiency of N, P, K, and Mg in all organs was significantly increased at elevated CO2. At harvest maturity, grain yield was increased by 27% at elevated CO2 while grain (protein) concentration was decreased by a similar magnitude (28%), suggesting that critical nutrient requirements for rice might need to be reassessed with global climate change.  相似文献   

14.
The flux of a trace gas between soil and atmosphere is usually the result of simultaneously operating production and consumption processes. The compensation concentration is the concentration at which the rate of production equals the rate of consumption so that the net flux between soil and atmosphere is zero. Production and uptake may be due to different processes, which are at least partially known for some of the trace gases, and which may be differently regulated. The direction and the magnitude of the flux between soil and atmosphere is a function of both the compensation concentration and the trace gas concentration in the ambient atmosphere. Compensation and/or ambient concentrations may fluctuate and thus may have a strong impact on the flux of CO, NO and NO2, and to a smaller extent also on that of H2. Compensation concentrations also exist for N2O and OCS, but are too high to affect the flux under field conditions. Compensation concentrations have so far not been demonstrated for the flux of CH4. However, the uptake of CH4 by soil exhibits a threshold concentration below which no uptake occurs.Article invited in celebration of tenth anniversary ofBiogeochemistry.  相似文献   

15.
Corn-cob was used as a substrate in the production of oxytetracycline by Streptomyces rimosus TM-55 in a solidstate fermentation. Oxytetracycline was detected on day 4, and reached its maximum on day 8. Optimal conditions for oxytetracycline production were an initial pH of 5.2 to 6.3, an initial moisture content of 64% to 67%, supplementation with 20% (w/w) rice bran or 1.5% to 2.5% (w/w) (NH4)2SO4 as sole N source, 1.0% (w/w) CaCO3, 2% (w/w) MgSO4.7H2O, and 0.5% (w/w) KH2PO4, with incubation for 8 days at 25 to 30°C. Each g substrate produced 7 to 8 mg oxytetracycline.  相似文献   

16.

Background

Zinc (Zn) biofortification through foliar Zn application is an attractive strategy to reduce human Zn deficiency. However, little is known about the biofortification efficiency and bioavailability of rice grain from different forms of foliar Zn fertilizers.

Methodology/Principal Findings

Four different Zn forms were applied as a foliar treatment among three rice cultivars under field trial. Zinc bioavailability was assessed by in vitro digestion/Caco-2 cell model. Foliar Zn fertilization was an effective agronomic practice to promote grain Zn concentration and Zn bioavailability among three rice cultivars, especially, in case of Zn-amino acid and ZnSO4. On average, Zn-amino acid and ZnSO4 increased Zn concentration in polished rice up to 24.04% and 22.47%, respectively. On average, Zn-amino acid and ZnSO4 increased Zn bioavailability in polished rice up to 68.37% and 64.43%, respectively. The effectiveness of foliar applied Zn-amino acid and ZnSO4 were higher than Zn-EDTA and Zn-Citrate on improvement of Zn concentration, and reduction of phytic acid, as a results higher accumulation of bioavailable Zn in polished rice. Moreover, foliar Zn application could maintain grain yield, the protein and minerals (Fe and Ca) quality of the polished rice.

Conclusions

Foliar application of Zn in rice offers a practical and useful approach to improve bioavailable Zn in polished rice. According to current study, Zn-amino acid and ZnSO4 are recommended as excellent foliar Zn forms to ongoing agronomic biofortification.  相似文献   

17.
Zn‐based batteries are safe, low cost, and environmentally friendly, as well as delivering the highest energy density of all aqueous battery systems. However, the application of Zn‐based batteries is being seriously hindered by the uneven electrostripping/electroplating of Zn on the anodes, which always leads to enlarged polarization (capacity fading) or even cell shorting (low cycling stability). How a porous nano‐CaCO3 coating can guide uniform and position‐selected Zn stripping/plating on the nano‐CaCO3‐layer/Zn foil interfaces is reported here. This Zn‐deposition‐guiding ability is mainly ascribed to the porous nature of the nano‐CaCO3‐layer, since similar functionality (even though relatively inferior) is also found in Zn foils coated with porous acetylene black or nano‐SiO2 layers. Furthermore, the potential application of this strategy is demonstrated in Zn|ZnSO4+MnSO4|CNT/MnO2 rechargeable aqueous batteries. Compared with the ones with bare Zn anodes, the battery with a nano‐CaCO3‐coated Zn anode delivers a 42.7% higher discharge capacity (177 vs 124 mAh g?1 at 1 A g?1) after 1000 cycles.  相似文献   

18.
Cultivar differences in leaf photosynthesis of rice bred in Japan   总被引:9,自引:0,他引:9  
The grain yield of rice (Oryza sativa L.), as well as of other cereal crops, is limited to a large extent, by the supply of photosynthates produced during grain filling period. In this study, flag leaf photosynthesis (LPS) after heading was compared among 32 cultivars bred during the past century in Japan, to determine if the improvement of LPS has occurred with the breeding advance of high yielding cultivars. Measurement of LPS was made for 5 consecutive years in the paddy field, on the flag leaf of the main stem, at heading (LPS-0), and 2 weeks (LPS-2) and 4 weeks (LPS-4) after heading. LPS decreased with advance of leaf senescence from LPS-0 to LPS-2, and then to LPS-4. However, if nitrogen was top-dressed at the heading time, high LPS-2 was maintained, particularly in the newer cultivars. A significant positive correlation between LPS and the released year of cultivar was found at LPS-2, especially in the nitrogen top-dressed plot, but not at LPS-0 or LPS-4. Cultivar difference in LPS of the senescing leaves were not stable through the different years, whereas LPS-0 was stable over years, suggesting that the LPS in the senescent leaf is susceptible to the environmental variation due to the effects on leaf senescence. Cultivar difference in LPS at any stage was closely associated with mesophyll conductance to CO2, and stomatal conductance was also associated with cultivar difference in such a high LPS as LPS-0 and nitrogen top-dressed LPS-2. Significant correlation between LPS and specific leaf weight was not observed at any stage of the flag leaf.Abbreviations CV coefficient of variation - gm mesophyll conductance - gs stomatal conductance - LPS apparent photosynthetic rate per unit leaf area (leaf photosynthesis) - LPS-0 LPS at heading - LPS-2 LPS at active grain filling - LPS-4 LPS at maturity of grain - NT non-top dressed plot - PPFD photosynthetic photon flux density - rm mesophyll resistance - rs stomatal diffusion resistance against CO2 - rs(H2O) stomatal diffusion resistance against H2O - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TD nitrogen top-dressed plot  相似文献   

19.
Amat  M. A.  Braud  J. -P. 《Hydrobiologia》1990,(1):467-471
Cultivated Chondrus crispus was used in N-NH4 uptake experiments in the laboratory. An elevation of temperature increased the apparent rate of uptake, especially up to 11 °C. Uptake in the dark was found to be 83 % of that in the light. The apparent uptake decreased with increasing internal N pool; rates were 26.5, 22.2 and 20.2 µg N g dry wt–1 min–1 for internal N pools of 2.7, 3.5 and 4.6%, respectively. Apparent uptake increased with the substrate N concentration. The resulting curve has two components: an active uptake and a diffusion component at high (> 5000 µg N L–1) external N levels. Ks and V max were calculated by deducting the diffusion component from the uptake curve: these were of 497 µg N L –1 and 14.4 µg N g dry wt–1 min–1. respectively, and reflect a low substrate affinity. This could be the result of 10 years of continuous culture of C. crispus. Uptake was similarly followed in the culture tanks and showed comparable results; nighttime would be the most appropriate time to supply nutrients.  相似文献   

20.
Differential uptake and translocation of Ca and Sr in organisms have been reported, calling into question the use of Sr to track Ca cycling in the environment. We investigated the relationship between Ca/Sr ratios in soil extracts of various strengths (H2O, NH4Cl, and NH4EDTA) and seedlings of sugar maple (Acer saccharum Marsh.) grown from natural regeneration on 37 sites. Our objectives were to determine if Ca/Sr ratios in soil extracts are correlated with those in sugar maple tissues, and what soil extractant best duplicate plant tissue Ca/Sr ratios. Leaves had higher Ca/Sr ratios than stems and the extractants did not produce equal Ca/Sr ratios: H2O had the lowest Ca/Sr, and NH4EDTA the highest. The relationships between soil extract Ca/Sr ratios and leaf and stem Ca/Sr ratios were significant and linear, but the slopes differed among extractants. The lowest slope (0.45) was observed for the water extract/leaves and the highest (2.15) for the NH4EDTA extract/stem with discrimination factors ranging from 0.22 with NH4EDTA to 1.59 for water. Leaf extracts were more strongly correlated with soil Ca/Sr than stem extracts (R 2 of 0.57–0.7 vs. R 2 of 0.45–0.6, respectively). These findings support the use of Ca/Sr ratios in plants to track their source of soil Ca, but they highlight the need to calibrate the relationships for the plant tissue and soil extractant used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号