首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 It has been reported that repetitive freeze-thaw cycles of aqueous suspensions of dioleoylphosphatidylcholine form vesicles with a diameter smaller than 200 nm. We have applied the same treatment to a series of phospholipid suspensions with particular emphasis on dioleoylphosphatidylcholine/dioleoylphosphatidic acid (DOPC/DOPA) mixtures. Freeze-fracture electron microscopy revealed that these unsaturated lipids form unilamellar vesicles after 10 cycles of freeze-thawing. Both electron microscopy and broad-band 31P NMR spectra indicated a disparity of the vesicle sizes with a highest frequency for small unilamellar vesicles (diameters ≤30 nm) and a population of larger vesicles with a frequency decreasing exponentially as the diameter increases. From 31P NMR investigations we inferred that the average diameter of DOPC/DOPA vesicles calculated on the basis of an exponential size distribution was of the order of 100 nm after 10 freeze-thaw cycles and only 60 nm after 50 cycles. Fragmentation by repeated freeze-thawing does not have the same efficiency for all lipid mixtures. As found already by others, fragmentation into small vesicles requires the presence of salt and does not take place in pure water. Repetitive freeze-thawing is also efficient to fragment large unilamellar vesicles obtained by filtration. If applied to sonicated DOPC vesicles, freeze-thawing treatment causes fusion of sonicated unilamellar vesicles into larger vesicles only in pure water. These experiments show the usefulness of NMR as a complementary technique to electron microscopy for size determination of lipid vesicles. The applicability of the freeze-thaw technique to different lipid mixtures confirms that this procedure is a simple way to obtain unilamellar vesicles. Received: 2 September 1999 / Revised version: 27 February 2000 / Accepted: 27 February 2000  相似文献   

2.
Factors influencing the frequency of thioguanine resistant mutations were examined in Chinese hamster lung cells damaged with a carcinogen, N-acetoxy-2-acetyl aminofluorene. Factors such as inoculum density, expression time, and concentration of selective agent were found to have a profound effect on the mutation frequency.Over a range of doses, a longer expression time is required for mutant cells from a more damaged population to reach their maximum frequency. In order to investigate the elements involved in this phenomenon, the increment in the plating efficiency of treated cells as a function of expression time, spontaneous mutation rate per cell per generation, viability of mutant as well as wild type cells, and half life of HGPRTase were evaluated.There was an observed relationship between induced mutation frequency and plating efficiency of treated cells. When treated cells had recovered from effects of the treatment and arrived at the normal level of plating efficiency, they also yielded the maximum frequency of mutations.The estimated mutation rate was 5.5 × 10?8 per cell per generation. This number is too small to account for the increment in mutation frequency with the increase in the expression time. The mutation frequency of spontaneous origin was 4 × 10?6 and that of induction of 10?5 M NA-AAF was 10?4. Lower growth rates of mutant cells cannot explain this increase in the number of mutants recovered, either.Continuous diminution in the level of HGPRTase, at 35% daily, interpreted as an important factor responsible for the recovery of mutation frequency during expression time, was observed in non-dividing cells. None of a large number of mutants sampled from those isolated had HGRPT activity. This indicates that they are true mutants and are not a result of phenocopy. Only cells completely deficient in HGPRT activity are recovered in TG selection medium. It is suggested, therefore, that this cell line is suitable for mutagenicity testing in the induction of mutation at the HGPRT locus.  相似文献   

3.
Folic acid deficiency (FA-) augments DNA damage caused by alkylating agents. The role of DNA repair in modulating this damage was investigated in mice. Weanling wild-type or 3-methyladenine glycosylase (Aag) null mice were maintained on a FA- diet or the same diet supplemented with folic acid (FA+) for 4 weeks. They were then treated with methyl methanesulfonate (MMS), 100mg/kg i.p. Six weeks later, spleen cells were collected for assays of non-selected and 6-thioguanine (TG) selected cloning efficiency to measure the mutant frequency at the Hprt locus. In wild-type mice, there was no significant effect of either MMS treatment or folate dietary content on splenocyte non-selected cloning efficiency. In contrast, non-selected cloning efficiency was significantly higher in MMS-treated Aag null mice than in saline treated controls (diet-gene interaction variable, p=0.04). The non-selected cloning efficiency was significantly higher in the FA+ diet than in the FA- diet group after MMS treatment of Aag null mice. Mutant frequency after MMS treatment was significantly higher in FA- wild-type and Aag null mice and in FA+ Aag null mice, but not in FA+ wild-type mice. For the Aag null mice, mutant frequency was higher in the FA+ mice than in the FA- mice after either saline or MMS treatment. These studies indicate that in wild-type mice treated with MMS, dietary folate content (FA+ or FA-) had no effect on cytotoxicity, but FA- diet increased DNA mutation frequency compared to FA+ diet. In Aag null mice, FA- diet increased the cytotoxic effects of alkylating agents but decreased the risk of DNA mutation.  相似文献   

4.
利用CRISPR/Cas9基因编辑技术建立tau-V337M突变的阿尔茨海默病(Alzheimer’s disease,AD)小鼠模型。通过设计和体外合成单向导RNAs(single guide RNAs,sgRNA)及单链寡核苷酸(single-stranded oligonucleotides,ssODN),将sgRNA、Cas9蛋白、ssODN注射到小鼠受精卵内,利用DNA切割和重组产生突变。为了提高重组效率,又在注射时添加Rad51蛋白。使用自然交配的雌鼠作为受体,将2细胞期的编辑胚胎进行单侧输卵管移植。研究发现通过添加Rad51蛋白可以获得较高的突变效率,在F0小鼠中获得了tau-V337M小鼠并进行扩繁,F0代tau-V337M小鼠可以将突变遗传给F1代。综上所述,本研究利用Cas9、ssODN和Rad51成功建立了首个tau-V337M基因位点突变的小鼠模型,为AD的研究和点突变模型制作提供了模型和方法基础。  相似文献   

5.
《新西兰生态学杂志》2011,34(3):297-305
Reliable information about population density and trends is essential for making valid inferences regarding conservation management. The suitability of point counts using distance sampling was examined as a means of monitoring a population of kaka (Nestor meridionalis septentrionalis), a large forest-dwelling parrot, inhabiting the Waipapa Ecological Area in the central North Island of New?Zealand. Counts were conducted on 13 occasions between 2000 and 2007. The sampling design was tailored to maximise the detectability of kaka and to minimise violations of the four most important assumptions of distance sampling. Location errors and subsequent distance estimation errors were most likely to bias density estimates despite our attempts to minimise failures of this assumption. Densities estimated from counts conducted in October were similar between 2000 and 2007 (approximately 0.5 kaka ha-1) with no evidence of either a positive or negative trend. Densities derived from counts in February or March were more erratic and seemed to reflect variation in the frequency and success of the preceding breeding season. Given the frequency of kaka breeding, the pest control regime during the study period, and our attempts to minimise violations of distance sampling assumptions, we are confident that the reported trends in density are realistic. Although distance sampling was found to give reliable density estimates of kaka at Waipapa, this may not be the case at other sites, particularly where kaka density is low, location error is high, forest structure or topography are more complex, or surveys of kaka are made part of more extensive multi-species surveys.  相似文献   

6.
The frequency of the most common sporadic Apert syndrome mutation (C755G) in the human fibroblast growth factor receptor 2 gene (FGFR2) is 100–1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 103 to >104 times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10−6) the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model). This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp) carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation deleterious to an offspring, thereby unfavorably altering the mutational load in humans. Studying the anatomical distribution of germline mutations can provide new insights into genetic disease and evolutionary change.  相似文献   

7.
Herein, a detailed protocol for a random mutation capture (RMC) assay to measure nuclear point mutation frequency in mouse tissue is described. This protocol is a simplified version of the original method developed for human tissue that is easier to perform, yet retains a high sensitivity of detection. In contrast to assays relying on phenotypic selection of reporter genes in transgenic mice, the RMC assay allows direct detection of mutations in endogenous genes in any mouse strain. Measuring mutation frequency within an intron of a transcribed gene, we show this assay to be highly reproducible. We analyzed mutation frequencies from the liver tissue of animals with a mutation within the intrinsic exonuclease domains of the two major DNA polymerases, δ and ε. These mice exhibited significantly higher mutation frequencies than did wild-type animals. A comparison with a previous analysis of these genotypes in Big Blue mice revealed the RMC assay to be more sensitive than the Big Blue assay for this application. As RMC does not require analysis of a particular gene, simultaneous analysis of mutation frequency at multiple genetic loci is feasible. This assay provides a versatile alternative to transgenic mouse models for the study of mutagenesis in vivo.  相似文献   

8.
New Zealand Black (NZB) mice, a de novo model of CLL, share multiple characteristics with CLL patients, including decreased expression of miR-15a/16-1. We previously discovered a point mutation and deletion in the 3'' flanking region of mir-16-1 of NZB and a similar mutation has been found in a small number of CLL patients. However, it was unknown whether the mutation is the cause for the reduced miR-15a/16-1 expression and CLL development. Using PCR and in vitro microRNA processing assays, we found that the NZB sequence alterations in the mir-15a/16-1 loci result in deficient processing of the precursor forms of miR-15a/16-1, in particular, we observe impaired conversion of pri-miR-15a/16-1 to pre-miR-15a/16-1. The in vitro data was further supported by derivation of congenic strains with replaced mir-15a/16-1 loci at one or both alleles: NZB congenic mice (NmiR+/-) and DBA congenic mice (DmiR-/-). The level of miR-15a/16-1 reflected the configuration of the mir-15a/16-1 loci with DBA congenic mice (DmiR-/-) showing reduced miR-15a levels compared to homozygous wild-type allele, while the NZB congenic mice (NmiR+/-) showed an increase in miR-15a levels relative to homozygous mutant allele. Similar to Monoclonal B-cell Lymphocytosis (MBL), the precursor stage of the human disease, an overall expansion of the B-1 population was observed in DBA congenic mice (DmiR-/-) relative to wild-type (DmiR+/+). These studies support our hypothesis that the mutations in the mir-15a/16-1 loci are responsible for decreased expression of this regulatory microRNA leading to B-1 expansion and CLL development.  相似文献   

9.
Ku80 and DNA-PKCS are both involved in the repair of double strand DNA breaks via the nonhomologous end joining (NHEJ) pathway. While ku80−/− mice exhibit a severely reduced lifespan and size, this phenotype is less pronounced in dna-pkcs−/− mice. However, these observations are based on independent studies with varying genetic backgrounds. Here, we generated ku80−/−, dna-pkcs−/− and double knock out mice in a C57Bl6/J*FVB F1 hybrid background and compared their lifespan, end of life pathology and mutation frequency in liver and spleen using a lacZ reporter. Our data confirm that inactivation of Ku80 and DNA-PKCS causes reduced lifespan and bodyweights, which is most severe in ku80−/− mice. All mutant mice exhibited a strong increase in lymphoma incidence as well as other aging-related pathology (skin epidermal and adnexal atrophy, trabacular bone reduction, kidney tubular anisokaryosis, and cortical and medullar atrophy) and severe lymphoid depletion. LacZ mutation frequency analysis did not show strong differences in mutation frequencies between knock out and wild type mice. The ku80−/− mice had the most severe phenotype and the Ku80-mutation was dominant over the DNA-PKCS-mutation. Presumably, the more severe degenerative effect of Ku80 inactivation on lifespan compared to DNA-PKCS inactivation is caused by additional functions of Ku80 or activity of free Ku70 since both Ku80 and DNA-PKCS are essential for NHEJ.  相似文献   

10.
 A system for barley transformation via polyethyleneglycol-mediated DNA uptake into protoplasts isolated directly from scutella and the regeneration of transgenic plants is reported. Scutellum protoplasts (cv. Clipper, an Australian malting cultivar) were co-transformed with plasmids Act 1-DGUS, containing the marker uidA gene, and pCaIneo, which contains the selectable marker neomycin phosphotransferase gene. Protoplast-derived calluses were selected on medium containing the antibiotic G418 (25 and 15 mg.l–1) and macroscopic antibiotic resistant colonies were recovered. Fertile plants were regenerated from a callus line and molecular analysis confirmed transgene integration. Received: 11 October 1999 / Revision received: 11 February 2000 / Accepted: 11 February 2000  相似文献   

11.
Interferon (IFN)-stimulated gene 15 (ISG15) is a ubiquitin-like molecule that conjugates to target proteins via a C-terminal LRLRGG motif and has antiviral function in vivo. We used structural modeling to predict human ISG15 (hISG15) residues important for interacting with its E1 enzyme, UbE1L. Kinetic analysis revealed that mutation of arginine 153 to alanine (R153A) ablated hISG15-hUbE1L binding and transthiolation of UbcH8. Mutation of other predicted UbE1L-interacting residues had minimal effects on the transfer of ISG15 from UbE1L to UbcH8. The capacity of hISG15 R153A to form protein conjugates in 293T cells was markedly diminished. Mutation of the homologous residue in mouse ISG15 (mISG15), arginine 151, to alanine (R151A) also attenuated protein ISGylation following transfection into 293T cells. We assessed the role of ISG15-UbE1L interactions in control of virus infection by constructing double subgenomic Sindbis viruses that expressed the mISG15 R151A mutant. While expression of mISG15 protected alpha/beta-IFN-receptor-deficient (IFN-αβR−/−) mice from lethality following Sindbis virus infection, expression of mISG15 R151A conferred no survival benefit. The R151A mutation also attenuated ISG15's ability to decrease Sindbis virus replication in IFN-αβR−/− mice or prolong survival of ISG15−/− mice. The importance of UbE1L was confirmed by demonstrating that mice lacking this ISG15 E1 enzyme were highly susceptible to Sindbis virus infection. Together, these data support a role for protein conjugation in the antiviral effects of ISG15.  相似文献   

12.
Early studies on Rpe65 knockout mice reported that remaining visual function was attributable to cone function. However, this finding has been challenged more and more as time has passed. Electroretinograms (ERGs) showed that rd12 mice, a spontaneous animal model of RPE65 Leber’s congenital amaurosis, had sizeable photopic responses. Unfortunately, the recorded ERG waveform was difficult to interpret because of a remarkably delayed peak-time, which resembles a rod response more than a cone response. Here, we compare flicker ERGs in animals with normal rod and cone function (C57BL/6J mice), pure rod function (cpfl5 mice), and pure cone function (Rho-/- mice) under different adaptation levels and stimulus intensities. These responses were then compared with those obtained from rd12 mice. Our results showed that normal rods respond to low frequency flicker (5 and 15 Hz) and that normal cones respond to both low and high frequency flicker (5–35 Hz). As was seen in cpfl5 mice, rd12 mice had recordable responses to low frequency flicker (5 and 15Hz), but not to high frequency flicker (25 and 35 Hz). We hypothesize that abnormal rods may be the source of residual vision in rd12 mice, which is proved correct here with double mutant rd12mice. In this study, we show, for the first time, that frequency-response ERGs can effectively distinguish cone- and rod-driven responses in the rd12 mouse. It is another simple and valid method for evaluating the respective contributions of retinal rods and cones.  相似文献   

13.
To supplement a previous analysis of spontaneous tandem-base mutations (TBM) in the lacI gene of Big Blue® mice, 2658 additional mutants were sequenced from 13 tissues and 44 spontaneous TBM were identified (tripling the sample size). Previous findings were confirmed and generalized and several new observations were made. TBM differ from single and other double mutations in that TBM frequency varies dramatically with tissue type. In certain tissues, most notably male germ cells, no TBM are observed despite screening as many as 26 million plaque forming units. TBM are most frequent in kidney and liver (3.45 and 2×10−6, respectively), accounting for 7.6 and 4.8% of all mutational events in kidney and liver, respectively. There is a trend for elevated TBM frequency in thymic lymphomas in p53-deficient mice. TBM are more frequent in old age in both liver and kidney. TBM differ from single mutations and other double mutations because they display a marked difference in pattern and dramatic tissue specificity for target sequence. Five of the 78 possible TBM outcomes comprise 79% of those observed, and mutations at GG/CC predominate. TBM in mice were compared with TBM found in human mutation databases. TBM are also rare in the human germline (one in 5133 germline mutations reported in five human mutation databases). In general, the types of somatic TBM are similar in mice and humans except for an excess of TG/CA to CA/TG TBM in humans (TBM related to ultraviolet light-induced skin cancer were excluded). TBM may be the result of unknown mechanisms that may have some similarities in mice and humans.  相似文献   

14.
Interleukin-15 (IL-15) is necessary for the development and function of NK/NKT cells and the maintenance of naive and memory CD8+ T cells. In the absence of IL-15, protective innate immunity is not available; however, a functional adaptive immune response against vaginal herpes simplex virus 2 (HSV-2) is generated. Mice overexpressing IL-15 (IL-15tg mice) have higher numbers of NK cells, greater NK-derived gamma interferon, and more CD8+ T cells. Here we examined the consequences of IL-15 overexpression for innate and adaptive immunity against genital HSV-2. Surprisingly, IL-15tg mice immunized against HSV-2 were not protected against genital HSV-2 challenge compared to control immunized mice. IL-15tg mice had a higher frequency of NK cells in the genital mucosa than control mice. However, immunized IL-15tg mice had significantly lower numbers of HSV-2-specific CD4+ T cells than B6 mice. We then confirmed that CD4+ T cells, but not CD8+ T cells, are essential for protection against intravaginal HSV-2 challenge. Since we observed less protection in immunized IL-15tg mice, we then examined if the adaptive immune responses generated in an environment with overexpression of IL-15 could provide protection against HSV-2 in an environment with normal levels of IL-15 expression. We adoptively transferred immunized cells from IL-15tg and B6 mice into naive RAG-1−/− mice and found that the cells from immunized IL-15tg mice were able to provide protection in this IL-15-normal environment. Our data suggest that overexpression of IL-15 results in a reduced CD4+ T cell-mediated adaptive immune response against genital HSV-2.  相似文献   

15.
Effects of ENU dosage on mouse strains   总被引:15,自引:0,他引:15  
The germline supermutagen, N-ethyl-N-nitrosourea (ENU), has a variety of effects on mice. ENU is a toxin and carcinogen as well as a mutagen, and strains differ in their susceptibility to its effects. Therefore, it is necessary to determine an appropriate mutagenic, non-toxic dose of ENU for strains that are to be used in experiments. In order to provide some guidance, we have compiled data from a number of laboratories that have exposed male mice from inbred and non-inbred strains or their F1 hybrids to ENU. The results show that most F1 hybrid animals tolerate ENU well, but that inbred strains of mice vary in their longevity and in their ability to recover fertility after treatment with ENU. Received: 11 February 2000 / Accepted: 11 February 2000  相似文献   

16.
We have established xeroderma pigmentosum group A (XPA) gene-knockout mice with nucleotide excision repair (NER) deficiency, which rapidly developed skin tumors when exposed to a low dose of chronic UV like XP-A patients, confirming that the NER process plays an important role in preventing UVB-induced skin cancer. To examine the in vivo mutation in the UVB-irradiated epidermis, we established XPA (−/−), (+/−) and (+/+) mice carrying the Escherichia coli rpsL transgene with which the mutation frequencies and spectra in the UVB-irradiated epidermal tissue can be examined conveniently. The XPA (−/−) mice showed a higher frequency of UVB-induced mutation in the rpsL transgene with a low dose (150 J/m2) of UVB-irradiation than the XPA (+/−) and (+/+) mice, while, at a high dose (900 J/m2) they showed almost the same frequency of mutation as the XPA (+/−) and (+/+) mice, probably because of cell death in the epidermis of the XPA (−/−) mice. However, CC→TT tandem transition, a hallmark of UV-induced mutation, was detected at higher frequency in the XPA (−/−) mice than the XPA (+/−) and (+/+) mice at both doses of UVB. This rpsL/XPA mouse system will be useful for further analyzing the role of NER in the mutagenesis and carcinogenesis induced by various carcinogens.  相似文献   

17.
Biofilm reactors are particularly suitable for the treatment of large amounts of diluted effluent, such as groundwater contaminated with scarcely soluble pollutants. A packed-bed column reactor was tested for the degradation of acenaphthene, phenanthrene and pyrene provided at their aqueous solubility concentrations. Acenapthene and phenanthrene were removed to more than 99% efficiency from this reactor whilst pyrene was removed to 90%. Pollutant disappearance was also recorded in the control reactor and was probably caused by the adsorption of pollutants into the reactor. The measurement of oxygen consumption in both reactors confirmed that microbial degradation of the pollutants was indeed occurring in the inoculated reactor. Physical adsorption is not however unwanted, as it could help with the formation of a biofilm at an early stage of the treatment. Received: 29 February 2000 / Received revision: 30 May 2000 / Accepted: 3 June 2000  相似文献   

18.
The incidence of childhood cancer is increasing and recent evidence suggests an association between childhood cancer and environmental exposure to genotoxins. In the present study, the Big Blue transgenic mouse model was used to determine whether specific periods in early life represent windows of vulnerability to mutation induction by genotoxins in mouse liver. Groups of mice were treated with single doses of 120 mg N-ethyl-N-nitrosourea (ENU)/kg body weight or the vehicle either transplacentally to the 18-day-old fetus or at postnatal days (PNDs) 1, 8, 15, 42 or 126; the animals were sacrificed 6 weeks after their treatment. The cII mutation assay was performed to determine the mutant frequencies (MFs) in the livers of the mice. Liver cII MFs for both sexes were dependent on the age at which the animals were treated. Perinatal treatment with ENU (either transplacental treatment to the 18-day-old fetus or i.p. injection at PND 1) induced relatively high MFs. However, ENU treatment at PNDs 8 and 15 resulted in the highest mutation induction. The lowest mutation induction occurred in those animals treated as adults (PND 126). For instance, the cII MF for the PND 8 female group was 646 x 10(-6) while the MF for female adults was only 145 x 10(-6), a more than 4-fold difference. Molecular analysis of the mutants found that A:T-->T:A transversions and A:T-->G:C transitions characterized the pattern of mutations induced by ENU in both the neonate and adult mice, while the predominate type of mutation in the controls was G:C-->A:T. The results indicate that mouse liver is most sensitive to ENU-induced mutation during infancy. This period correlates well with the age-dependent sensitivity to carcinogenicity in mouse liver, suggesting that mutation is an important rate-limiting factor for age-related carcinogenesis.  相似文献   

19.
Analysis of spontaneous multiple mutations in normal and tumor cells may constrain hypotheses about the mechanisms responsible for multiple mutations and provide insight into the mutator phenotype. In a previous study, spontaneous doublets in Big Blue mice were dramatically more frequent than expected by chance and exhibited a mutation pattern similar to that observed for single mutations [Mutat. Res. 452 (2000) 219]. The spacing between mutations in doublets was generally closer than expected by chance and the distribution of mutation spacing fit an exponential, albeit with substantial scatter. We now analyze 2658 additional mutants and confirm that doublets are enhanced dramatically relative to chance expectation. The spacing, frequency and pattern of spontaneous doublets and multiplets (domuplets) are examined as a function of age, tissue type, p53-deficiency and neoplasia in the new and combined data. The new and combined data confirm that the distribution of the spacing between mutations in doublets is non-random with the mutations more closely spaced than expected by chance (P < 0.0005; combined data), consistent with temporally coordinate (chronocoordinate) events. An exponential provides an excellent fit to the distribution (R2 = 0.98) and estimates that half of doublets have mutations separated by 120 nucleotides or less (the "half-life of mutation spacing"). We make several novel observations: (i) singlets and doublets show similar overall increases in frequency with age (ii) doublet frequency may be lower in the male germline, consistent with the generally reduced mutation frequency in the male germline (iii) doublet frequencies are elevated in somatic tissues of p53-deficient mice (Li-Fraumini cancer syndrome model; P = 0.005) and (iv) doublets and singlets in tumors from p53-deficient mice have a different mutation pattern (P = 0.007). The observations are consistent with chronocoordinate occurrence of spontaneous doublets and multiplets due to a transient error-prone condition and do not suggest a major role for the recently discovered Y family of error-prone polymerases. The enhancement of doublets in p53-deficient mice may contribute to cancer risk.  相似文献   

20.
We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1Δ18/Δ18), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5′ part of the ITPR1 gene, encompassing exons 1–10, 1–40, and 1–44 in three studied families, underlies SCA15 in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号