首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hwu WL  Wang PJ  Hsiao KJ  Wang TR  Chiou YW  Lee YM 《Human genetics》1999,105(3):226-230
GTP cyclohydrolase I (GTPCH) catalyzes the rate-limiting step of tetrahydrobiopterin (BH4) biosynthesis. GTPCH has been associated with two clinically distinct human diseases: the recessive hyperphenylalaninemia (HPA) and the dominant dopa-responsive dystonia (DRD). We found a recessive GTPCH mutation (R249S, 747C-->G in a dystonia patient. Her PHA-stimulated mononuclear blood cells had a normal amount of GTPCH mRNA, but low GTPCH activity. Arginine 249 is located at the C-terminus of GTPCH, outside the catalytic site. E. coli expressed recombinant R249S mutant protein possessed normal enzyme activity and kinetics. However, in transfected eukaryotic cells, R249S mutant protein expression level was lower than the wild-type protein. Therefore, this is suspected to be a destabilizing mutation. Our data suggest that DRD could be either dominantly or recessively inherited, and the inheritance might be determined by the mechanism of mutation.  相似文献   

2.
Catecholamine biosynthesis is regulated by tyrosine hydroxylase (TH) requiring tetrahydrobiopterin (BH4) as the cofactor. We found four (human TH type 1–4) and two isoforms (TH type 1 and 2) in humans and monkeys, while non-primate animals have a single TH corresponding to human TH type 1. BH4 is synthesized from GTP, and GTP cyclohydrolase I (GCH) is the first and regulatory enzyme. Mutations in GCH gene were found to cause both GCH deficiency with autosomal recessive trait and hereditary progressive dystonia with marked diurnal fluctuation (HPD) (Segawa's disease)/or DOPA-responsive dystonia (DRD) with autosomal dominant trait. When GCH activity is decreased to less than 20% of the normal value, the activity of TH in the nigrostriatal dopaminergic neurons may be first decreased resulting in decreases in TH activity and dopamine level, and in the symptoms of HPD/DRD. In contrast to HPD/DRD, juvenile parkinsonism (JP) have normal GCH activity. In Parkinson's disease (PD), GCH, TH, and dopamine in the striatum may decrease in parallel, as the secondary effects caused by cell death. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

3.
1. Catecholamine (dopamine, norepinephrine, and epinephrine) biosynthesis is regulated by tyrosine hydroxylase (TH). TH activity is regulated by the concentration of the cofactor tetrahydrobiopterin (BH4), whose level is regulated by GTP cyclohydrolase I (GCH) activity. Thus, GCH activity indirectly regulates TH activity and catecholamine levels.2. TH activity in the nigrostriatal dopaminergic neurons is most sensitive to the decrease in BH4.3. Mutations of GCH result in reductions in GCH activity, BH4, TH activity, and dopamine, causing either recessively inherited GCH deficiency or dominantly inherited hereditary progressive dystonia [HPD; Segawa's disease; also called dopa-responsive dystonia (DRD)].4. In juvenile parkinsonism and Parkinson's disease, which have dopamine deficiency in the basal ganglia as HPD/DRD, the GCH gene may be normal, and the molecular mechanism of the dopamine deficiency in the basal ganglia is different from that in HPD/DRD.  相似文献   

4.
Hereditary progressive dystonia with marked diurnal fluctuation (HPD; dopa-responsive dystonia, DRD) have been recently found to be caused by a genetic defect in the GTP cyclohydrolase I (GCH1) gene. In this study, we quantified the mRNA level of GCH1 in phytohemagglutinin (PHA)-stimulated mononuclear blood cells from one Japanese family that do not have a mutation in the coding region or splice junctions of the gene. The results showed that the amounts of the GCH1 mRNA were decreased to about 40% of the normal level in both patients and carriers. In addition, we found that the GCH1 mRNA was transcribed from only one allele, indicating that the other allele was in an inactive state. These results suggest that some novel mutations should exist on one of the alleles in some unknown region of the GCH1 gene, and may decrease the GCH1 mRNA causing the HPD/DRD symptoms.  相似文献   

5.
Molecular genetics of dopa-responsive dystonia   总被引:4,自引:0,他引:4  
The causative genes of two types of hereditary dopa-responsive dystonia (DRD) due to dopamine (DA) deficiency in the nigrostriatum DA neurons have been elucidated. Autosomal dominant DRD (AD-DRD) was originally described by Segawa as hereditary progressive dystonia with marked diurnal fluctuation (HPD). We cloned the human GTP cyclohydrolase I (GCH1) gene, and mapped the gene to chromosome 14q22.1-q22.2 within the HPD/DRD locus, which had been identified by linkage analysis. GCH1 isthe rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin (BH4), the cofactor for tyrosine hydroxylase (TH), which is the first and rate-limiting enzyme of DA synthesis. We proved that the GCH1 gene is the causative gene for HPD/DRD based on the identification of mutations of the gene in the patients and decreases in the enzyme activity expressed in mononuclear blood cells to 2-20% of the normal value. About 60 different mutations (missense, nonsense, and frameshift mutations) in the coding region or in the exon-intron junctions of the GCH1 gene have been reported in patients with AD-DRD all over the world. Recent findings indicate that the decreased GCH1 activity in AD-DRD may be caused by the negative interaction of the mutated subunit with the wild-type one, i.e., a dominant negative effect, and/or by decreases in the levels of GCH1 mRNA and protein caused by inactivation of one allele of the GCH1 gene. Autosomal recessive DRD (AR-DRD) with Segawa's syndrome was discovered in Germany. The AR-DRD locus was mapped to chromosome 11p15.5 in the chromosomal site of the TH gene. In the AR-DRD with Segawa's syndrome, a point mutation in TH (Gln381Lys) resulted in a pronounced decrease in TH activity to about 15% of that of the wild type. Several missense mutations in the TH gene have been found in AR-DRD in Europe. The phenotype of AR-DRD with the Leu205Pro mutation in the TH gene, which produces a severe decrease in TH activity to 1.5% of that of the wild type, was severe, not dystonia/Segawa's syndrome, but early-onset parkinsonism. However, a marked improvement of all clinical symptoms with a low dose of L-dopa was reported in AR-DRD/parkinsonism patients. These findings on DRD indicate that the nigrostriatal DA neurons may be most susceptible to the decreases in GCH1 activity, BH4 level, TH activity, and DA level, and that DRD is the DA deficiency without neuronal death in contrast to juvenile parkinsonism or Parkinson's disease with DA cell death.  相似文献   

6.
GTP cyclohydrolase I (GCH), an oligomeric protein composed of 10 identical subunits, is required for the synthesis of neurotransmitters; mutations in GCH are associated with dopa-responsive dystonia (DRD) and hyperphenylalaninemia. Mutated GCH proteins are unstable and prone to dominant-negative effect. We show herein that expression of the GCH mutant GCH-201E or the splicing variant GCH-II caused intracellular inclusion bodies. When Hsp27 was expressed together with the GCH mutants, Hsp27 expression decreased the formation of inclusion bodies by GCH (as assessed by immunofluorescence) and decreased the amount of insoluble GCH mutant proteins (as assessed by Western blot). Transfection of pcDNA-Hsp27-S3D, a phosphorylation-mimicry Hsp27 mutant, was more effective at the mutated GCH proteins than transfection with pcDNA-Hsp27, but okadaic acid, a phosphatase inhibitor, enhanced the effect of pcDNA-Hsp27. Hsp27-S3D also abolished the dominant-negative action of GCH-II. The mutated GCH proteins interacted with the wild-type GCH protein; the inclusion bodies were positive for lysosomal marker LAMP1, soluble in 2% SDS, and were not ubiquitinated. Phophorlyated Hsp27 also decreased the inclusion body formation by the huntingtin polyglutamines. Therefore, diseases involving mutated oligomeric proteins would be manageable by chaperone therapies.  相似文献   

7.
Tetrahydrobiopterin (BH4) is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GCH), 6-pyruvoyltetrahydropterin synthase (PTS), and sepiapterin reductase (SPD). GCH is the rate-limiting enzyme. BH4 is a cofactor for three pteridine-requiring monooxygenases that hydroxylate aromatic L-amino acids, i.e., tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and phenylalanine hydroxylase (PAH), as well as for nitric oxide synthase (NOS). The intracellular concentrations of BH4, which are mainly determined by GCH activity, may regulate the activity of TH (an enzyme-synthesizing catecholamines from tyrosine), TPH (an enzyme-synthesizing serotonin and melatonin from tryptophan), PAH (an enzyme required for complete degradation of phenylalanine to tyrosine, finally to CO2 + H2O), and also the activity of NOS (an enzyme forming NO from arginine), Dominantly inherited hereditary progressive dystonia (HPD), also termed DOPA-responsive dystonia (DRD) or Segawa's disease, is a dopamine deficiency in the nigrostriatal dopamine neurons, and is caused by mutations of one allele of the GCH gene. GCH activity and BH4 concentrations in HPD/DRD are estimated to be 2-20% of the normal value. By contrast, recessively inherited GCH deficiency is caused by mutations of both alleles of the GCH gene, and the GCH activity and BH4 concentrations are undetectable. The phenotypes of recessive GCH deficiency are severe and complex, such as hyperphenylalaninemia, muscle hypotonia, epilepsy, and fever episode, and may be caused by deficiencies of various neurotransmitters, including dopamine, norepinephrine, serotonin, and NO. The biosynthesis of dopamine, norepinephrine, epinephrine, serotonin, melatonin, and probably NO by individual pteridine-requiring enzymes may be differentially regulated by the intracellular concentration of BH4, which is mainly determined by GCH activity. Dopamine biosynthesis in different groups of dopamine neurons may be differentially regulated by TH activity, depending on intracellular BH4 concentrations and GCH activity. The nigrostriatal dopamine neurons may be most susceptible to a partial decrease in BH4, causing dopamine deficiency in the striatum and the HPD/DRD phenotype.  相似文献   

8.
GTP cyclohydrolase I, an enzyme that catalyzes the first reaction in the pathway for the biosynthesis of pterin compounds, was purified from of C3H mouse liver by 192-fold to apparent homogeneity, using Ultrogel AcA34, DEAE-Trisacryl, and GTP-agarose gels. Its native molecular weight was estimated at 362,000. When the enzyme was subjected to electrophoresis on a denaturing polyacrylamide gel, only one protein band was evident, and its molecular weight was estimated at 55,700. The NH2-terminal amino acid of this enzyme was serine. These results indicate the enzyme consists of six to eight subunits. No coenzyme or metal ion was required for activity. This enzyme activity was inhibited by most of divalent cations and was slightly activated by potassium ion. The Km value for GTP was determined to be 17.3 microM. The temperature and pH optima for the activity were 60 degrees C and pH 8.0-8.5, respectively. The expected products, a dihydroneopterin compound and formic acid, were found in a molar ratio of 1.01. A polyclonal antiserum generated against the purified enzyme was used to compare GTP cyclohydrolase I from the hph-1 mutant and normal mouse. The hph-1 mutant liver contained only 8% of normal specific activity, but a normal amount of GTP cyclohydrolase I antigen as compared with the C3H mouse. Subunit molecular weight and electrophoretic behavior of GTP cyclohydrolase I from hph-1 mutant were not different from those of the enzyme from C3H mouse. These results suggest that the hph-1 mutation may involve alteration of the catalytic site but does not detectably alter the whole enzyme structure.  相似文献   

9.
GTP cyclohydrolase I catalyzes the conversion of GTP to dihydroneopterin triphosphate. The replacement of histidine 179 by other amino acids affords mutant enzymes that do not catalyze the formation of dihydroneopterin triphosphate. However, some of these mutant proteins catalyze the conversion of GTP to 2-amino-5-formylamino-6-ribofuranosylamino-4(3H)-pyrimidinone 5'-triphosphate as shown by multinuclear NMR analysis. The equilibrium constant for the reversible conversion of GTP to the ring-opened derivative is approximately 0.1. The wild-type enzyme converts the formylamino pyrimidine derivative to dihydroneopterin triphosphate; the rate is similar to that observed with GTP as substrate. The data support the conclusion that the formylamino pyrimidine derivative is an intermediate in the overall reaction catalyzed by GTP cyclohydrolase I.  相似文献   

10.
11.
Dystonia represents the third most common movement disorder in humans. At least 15 genetic loci (DYT1-15) have been identified and some of these genes have been cloned. TOR1A (formally DYT1), the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. However, the function of torsinA has yet to be fully understood. Here, we have generated and characterized a complete loss-of-function mutant for dtorsin, the only Drosophila ortholog of TOR1A. Null mutation of the X-linked dtorsin was semi-lethal with most male flies dying by the pre-pupal stage and the few surviving adults being sterile and slow moving, with reduced cuticle pigmentation and thin, short bristles. Third instar male larvae exhibited locomotion defects that were rescued by feeding dopamine. Moreover, biochemical analysis revealed that the brains of third instar larvae and adults heterozygous for the loss-of-function dtorsin mutation had significantly reduced dopamine levels. The dtorsin mutant showed a very strong genetic interaction with Pu (Punch: GTP cyclohydrolase), the ortholog of the human gene underlying DYT14 dystonia. Biochemical analyses revealed a severe reduction of GTP cyclohydrolase protein and activity, suggesting that dtorsin plays a novel role in dopamine metabolism as a positive-regulator of GTP cyclohydrolase protein. This dtorsin mutant line will be valuable for understanding this relationship and potentially other novel torsin functions that could play a role in human dystonia.  相似文献   

12.
One of the possibly mutated genes in DOPA-responsive dystonia (DRD, Segawa's disease) is the gene encoding GTP cyclohydrolase I, which is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis. Based on our findings on 6-pyruvoyltetrahydropterin synthase (PTS) gene-disrupted (Pts(-/-)) mice, we suggested that the amount of tyrosine hydroxylase (TH) protein in dopaminergic nerve terminals is regulated by the intracellular concentration of BH4. In this present work, we rescued Pts(-/-) mice by transgenic introduction of human PTS cDNA under the control of the dopamine beta-hydroxylase promoter to examine regional differences in the sensitivity of dopaminergic neurons to BH4-insufficiency. The DPS-rescued (Pts(-/-), DPS) mice showed severe hyperphenylalaninemia. Human PTS was efficiently expressed in noradrenergic regions but only in a small number of dopaminergic neurons. Biopterin and dopamine contents, and TH activity in the striatum were poorly restored compared with those in the midbrain. TH-immunoreactivity in the lateral region of the striatum was far weaker than that in the medial region or in the nucleus accumbens. We concluded that dopaminergic nerve terminals projecting to the lateral region of the striatum are the most sensitive to BH4-insufficiency. Biochemical and pathological changes in DPS-rescued mice were similar to those in human malignant hyperphenylalaninemia and DRD.  相似文献   

13.
Saccharomyces cerevisiae is so far the only organism where a knock-out mutant in the gene encoding GTP cyclohydrolase I (FOL2) has been obtained. GTP cyclohydrolase I controls the de novo biosynthetic pathway of tetrahydrobiopterin and folic acid. Since deletion of yeast FOL2 leads to a recessive auxotrophy for folinic acid, we used a yeast fol2Delta mutant for an in vivo functional assay of heterologous GTP cyclohydrolases I. We show that the GTP cyclohydrolase I, encoded either by the E. coli folE gene or by the human cDNA, complements the yeast fol2Delta mutation by restoring folate prototrophy. Furthermore the folE-3x allele of the E. coli gene, carrying three base substitutions, failed to complement the yeast fol2Delta defect. This allele behaved as a negative semidominant to the wild type folE and, when overexpressed, completely abolished complementation of fol2Delta by folE. Thus, the yeast fol2 null mutant is a suitable system to characterize mutations in genes encoding GTP cyclohydrolase I.  相似文献   

14.
The regulation of GTP cyclohydrolase I would lead to the regulation of tetrahydrobiopterin, an important cofactor for synthesis of neurotransmitters. In an attempt to extend a previous finding [Bellahsene, Dhondt, & Farriaux (1984) Biochem. J. 217, 59-65] that GTP cyclohydrolase I of rat liver is inhibited by subnanomolar concentrations of reduced biopterin and sepiapterin, we found that this could not be verified with the enzyme from mouse liver, fruit-fly (Drosophila) heads or, indeed, from rat liver. It was shown, however, that 12 microM-sepiapterin inhibited mouse liver GTP cyclohydrolase I. Another compound, namely 6-acetyldihydrohomopterin, was also employed in the present study to explore its effect on enzymes that lead to its synthesis in Drosophila and for effects on mammalian systems; at 2-5 microM this compound was shown to stimulate one form of mouse liver GTP cyclohydrolase I and then to inhibit at higher concentrations (40 microM). Neither sepiapterin nor 6-acetyldihydrohomopterin caused any effect on the Drosophila head enzyme. On the other hand, the sigmoid GTP concentration curve for the Drosophila enzyme may indicate a regulatory characteristic of this enzyme. Another report, on the lower level of GTP cyclohydrolase I in mutant mouse liver [McDonald, Cotton, Jennings, Ledley, Woo & Bode (1988) J. Neurochem. 50, 655-657], was confirmed and extended. Instead of having 10% activity, we find that the hph-1 mouse mutant has less than 2% activity in the liver. These studies demonstrate that micromolar levels of reduced pterins may have regulatory effects on GTP cyclohydrolase I and that a mouse mutant is available that has low enough activity to be considered as a model for human atypical phenylketonuria.  相似文献   

15.
GTP cyclohydrolase I, the enzyme catalyzing the first step in the cofactor biosynthesis for the aromatic amino acid hydroxylases, has been localized in situ. By the use of a monoclonal antibody specific to human GTP cyclohydrolase I, the enzyme has been visualized immuno-enzymatically by alkaline phosphatase monoclonal anti-alkaline phosphatase labeling. In routine blood smears lymphocytes, monocytes/macrophages, and granulocytes show strong intraplasmatic staining. Premature erythrocytes show clear staining of the reticulated cytoplasmatic structure, while mature erythrocytes are completely negative. Neither is there any staining for GTP cyclohydrolase I in the blast cells of a case of T-cell acute lymphoblastic leukemia. These results closely confirm the prior finding that mature erythrocytes as well as most malignant mononuclear cells lack GTP cyclohydrolase I activity, and they indicate that in these cells the enzyme protein may be absent.  相似文献   

16.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates the feedback inhibition of GTP cyclohydrolase I activity by (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) through protein complex formation. Since guanine and BH4 have a common pyrimidine ring structure, we examined the inhibitory effect of guanine and its analogs on the enzyme activity. Guanine, 8-hydroxyguanine, 8-methylguanine, and 8-bromoguanine inhibited the enzyme activity in a GFRP-dependent and pH-dependent manner and induced complex formation between GTP cyclohydrolase I and GFRP. The type of inhibition by this group is a mixed type. All these properties were shared with BH4. In striking contrast, inhibition by 8-azaguanine and 8-mercaptoguanine was GFRP-independent and pH-independent. The type of inhibition by 8-azaguanine and 8-mercaptoguanine was a competitive type. The two compounds did not induce complex formation between the enzyme and GFRP. These results demonstrate that guanine compounds of the first group bind to the BH4-binding site of the GTP cyclohydrolase I/GFRP complex, whereas 8-azaguanine and 8-mercaptoguanine bind to the active site of the enzyme. Finally, the possible implications in Lesch-Nyhan syndrome and Parkinson diseases of the inhibition of GTP cyclohydrolase I by guanine and 8-hydroxyguanine are discussed.  相似文献   

17.
18.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation between one molecule of GTP cyclohydrolase I and two molecules of GFRP. Here, we report the analysis of ligand binding using the gel filtration method of Hummel and Dreyer. BH4 binds to the GTP cyclohydrolase I/GFRP complex with a Kd of 4 microM, and phenylalanine binds to the protein complex with a Kd of 94 microM. The binding of BH4 is enhanced by dGTP. The binding stoichiometrics of BH4 and phenylalanine were estimated to be 10 molecules of each per protein complex, in other words, one molecule per subunit of protein, because GTP cyclohydrolase I is a decamer and GFRP is a pentamer. These findings were corroborated by data from equilibrium dialysis experiments. Regarding ligand binding to free proteins, BH4 binds weakly to GTP cyclohydrolase I but not to GFRP, and phenylalanine binds weakly to GFRP but not to GTP cyclohydrolase I. These results suggest that the overall structure of the protein complex contributes to binding of BH4 and phenylalanine but also that each binding site of BH4 and phenylalanine may be primarily composed of residues of GTP cyclohydrolase I and GFRP, respectively.  相似文献   

19.
Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicates a model for the interaction of mammalian GTP cyclohydrolase I with its regulator, GFRP. Kinetic investigations of human GTP cyclohydrolase I in complex with rat and human GFRP showed similar regulatory effects of both GFRP proteins.  相似文献   

20.
Dopa-responsive dystonia (DRD) is a rare inherited dystonia that responds very well to levodopa treatment. Genetic mutations of GTP cyclohydrolase I (GCH1) or tyrosine hydroxylase (TH) are disease-causing mutations in DRD. To evaluate the genotype-phenotype correlations and diagnostic values of GCH1 and TH mutation screening in DRD patients, we carried out a combined study of familial and sporadic cases in Chinese Han subjects. We collected 23 subjects, 8 patients with DRD, 5 unaffected family members, and 10 sporadic cases. We used PCR to sequence all exons and splicing sites of the GCH1 and TH genes. Three novel heterozygous GCH1 mutations (Tyr75Cys, Ala98Val, and Ile135Thr) were identified in three DRD pedigrees. We failed to identify any GCH1 or TH mutation in two affected sisters. Three symptom-free male GCH1 mutation carriers were found in two DRD pedigrees. For those DRD siblings that shared the same GCH1 mutation, symptoms and age of onset varied. In 10 sporadic cases, only two heterozygous TH mutations (Ser19Cys and Gly397Arg) were found in two subjects with unknown pathogenicity. No GCH1 and TH mutation was found in 40 unrelated normal Han Chinese controls. GCH1 mutation is the main etiology of familial DRD. Three novel GCH1 mutations were identified in this study. Genetic heterogeneity and incomplete penetrance were quite common in DRD patients, especially in sporadic cases. Genetic screening may help establish the diagnosis of DRD; however, a negative GCH1 and TH mutation test would not exclude the diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号