首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From cultures of V79 Chinese hamster cells, 10 independent clones of 8-azaguanine resistant cells were isolated and subcultured. Cells from all ten clones were resistant to 1 mg/ml levels of 8-azaguanine (8-AzG), contained less than 3% of the wild type levels of the enzyme, hypoxanthine guanine phosphoribosyl transferase (HGPRT), and were unable to grow in HAT medium. The ten clones were classified according to the conditions under which they reverted to the wild type phenotype. Clones in classes I and II reverted spontaneously with frequencies of 40-10(-5) and about 3-10(-5) respectively, and the reversion frequency was independent of the density of cells of all but one of the clones in the culture medium used. Class II clones evinced increased reversion frequencies with ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and to a lesser extent with 5-bromo-2'-deoxyuridine (budR), suggesting that these clones contained point mutations in a locus which controls HGPRT activity. The processes of reversion and toxicity appeared to be associated. Class III clones did not revert spontaneously or with BUdR and MNNG, but did revert with EMS. The reversion frequency of class I clones was not increased after treatment with EMS, MNNG or BUdR.  相似文献   

2.
Nikaido O  Fox M 《Mutation research》1976,35(2):279-287
The frequency of surviving colonies in two V79 cell lines exposed to either 6-thioguanine or 8-azaguanine was dependent on initial plating density. Different degrees of metabolic-co-operation were found to occur in the two cell lines and the loss of both spontaneous and added mutants occurred at a lower cell density when 6TG was used for selection than when 8 AZ was used in both cell lines. Both analogues were degraded on incubation in medium plus serum in the absence of added cells. Variation in serum batch had little effect on the rate of degradation or on the frequency of colonies recovered after treatment of V79 cell lines with 8AZ. The reasons for preferring 8AZ to 6TG as a selective agent are discussed.  相似文献   

3.
Chinese hamster V79 cells were mutagenized with ethyl methanesulfonate at various concentrations. Clones resistant to 8-azaguanine (20 and 80 micrograms/ml) or 6-thioguanine (4 micrograms/ml) were selected at different times after the treatments. The total yield of induced mutations was only slightly affected by the kind and concentration of purine analog used in the selection. However, full phenotypic expression of the mutants selected with 8-azaguanine was achieved earlier than that of mutants resistant to 6-thioguanine. This result seems to be best explained by the reported lower affinity of 8-azaguanine for the wild-type HGPRT enzyme, thus providing evidence that, in this gene-mutation assay, the phenotypic expression time has a physiological component.  相似文献   

4.
8-azaguanine and 6-thioguanine were both toxic to non-dividing liver cells in primary cultures. In addition, these agents were toxic to an established line of liver-derived epithelial cells brought to growth arrest by serum deprivation. These observations demonstrate that the toxicity of 8-azaguanine and 6-thioguanine can occur at least in part through mechanisms that do not involve effects on DNA synthesis or incorporation of the analogs into DNA.Abbreviations AG 8-azaguanine - ARL adult rat liver epithelial cell line - HGPRT hypoxanthine-guanine phosphoribosyl transferase - WME Williams Medium E  相似文献   

5.
Exposure of V79 cells to azaguanine (7-21 microM for 2-7 weeks) had little effect on growth or plating efficiency but resulted in gradual acquisition of resistance to 8-azaguanine (AZ) and 6-thioguanine (TG) and loss of ability to grow in HAT. The rate of evolution of the resistant phenotype was dependent on the concentration and duration of exposure to AZ. The increase in proportion of resistant cells was paralleled by a rise in phosphatase activity (pH optimum 7.0-7.5) expressed by intact cells and this preceded the fall in HGPRT activity. Elevated phosphatase activity and a resistant phenotype were stably expressed in clones isolated and cultured in the absence of AZ. Hypoxanthine guanine phosphoribosyl transferase (HGPRT) activity in cell extracts of three resistant clones ranged from 18 to 43% of wild-type levels but was unaltered with respect to substrate affinity and electrophoretic mobility. Mg2+-dependent activity dephosphorylated inosine 5'monophosphate (IMP), guanine 5'monophosphate (GMP), adenosine-5-monophosphate (AMP) and p-nitrophenylphosphate (PNPP) and was also elevated with respect to wild-type levels in resistant cell extracts. Purine nucleoside phosphorylase levels were similar in sensitive and resistant cell extracts. Cross-sensitivity studies with other purine analogues suggest that the elevated phosphatase activity does not contribute to the resistant phenotype. No karyotypic changes were observed in the resistant cell lines.  相似文献   

6.
Cultured mouse clonal cells, H-5, were treated with two different mutagens, ethyl methanesulfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Then two selective procedures using 8-azaguanine (8-AZ) or 6-thioguanine (6-TG) were compared in an effort to isolate hypoxanthine-guanine phosphoribosyl-transferase (HGPRT)-deficient cells containing different gene alterations. While many 8-AZ resistant cells were induced by EMS treatment, considerably more 6-TG resistant cells were induced by the same treatment. MNNG treatment induced many 8-AZ resistant mutants but induced hardly any 6-TG resistant mutants. After a fusion experiment of 91 sets involving 13 HGPRT-deficient mouse clones, 7 of which were resistant to 8 AZ and 6 of which were resistant to 6TG with subsequent selection on HAT medium, complementation occurred only in those hybrid mixtures formed between 8-AZ- and 6-TG-resistant clones, while it did not occur at all in hybrid mixtures formed between different 8-AZ-resistant clones and mixtures formed between different 6-TG-resistant clones. The clonally isolated HGPRT-positive cells, characterized by tetraploid karyology, had an apparent activity of HGPRT ranging from 25 to 30% of that of the wild-type parental cells. Heat-inactivation of HGPRT at 65 °C revealed that HGPRT from wild-type cells was heat stable and HGPRT from some 8-AZ-resistant clones were heat labile, while HGPRT from hybrid cells had intermediate stability. These results indicate that there would be alterations in the structural gene of HGPRT in the 8-AZ- or 6-TG-resistant mutants, and also that two selective procedures with 8-AZ or 6-TG alone can isolate different alterations in the structural gene of HGPRT. Moreover, this indicates that some of these gene alterations were mutually complementary. It is most likely that there would be at least 3 cistrons in the locus responsible for HGPRT activity in the mouse cells.  相似文献   

7.
Factors affecting the efficiency of selection of “reverants” of salvage pathway mutants in media containing amethopterin have been examined. Our V79 Chines hamster cell line was found to require a significantly higher level of thymidine for optimal growth in such media than has been reported for other cell lines. Hypoxanthine (but not glycine) was also required for reversal of amethopterin toxicity, but levels did not differ significantly from those reported elsewhere. Growth in HAT was also dependent on plating density and serum batch. Our modification (VHAT) was compared with published HAT recipies in back selection reconstruction experiments. A sharp fall in EOR (efficiency of recovery) of wild type cells from mixtures with mutants at plating densities greater than 3500 cells/cm2 (105 cells/6 cm dish) was observed for VHAT. EOR with other HAT recipes was lower still, and was affected also by the particular mutant used in the mixture.EMS induced “revertants” were isolated from three 8AZr mutants by plating in VHAT. All. revertants were however amethopterin resistant, they were also 8AZ resistant and the mobility of residual HGPRT (as measured by polyacrylamide gel electrophoresis) was similar to that of their 8AZr parents i.e. dissimilar from that in wild type. The modal chromosome number of V79 wild type cells was 21. No significant deviation from this mode was detected in any of the mutant lines examined. The data indicate that the recovery of colonies in HAT from 8AZr mutants does not necessarily indicate that a back mutation in the structural gene for HGPRT has occurred. Thus, the frequency of HAT+ colonies cannot be taken as a direct indication of reversion frequencies.  相似文献   

8.
Higher mutation frequencies were observed on 8AG than on 8AG medium when HGPRT-deficient mutants were being selected in V79 Chinese hamster cells.2 alternative explanations for the effect of the medium were considered, namely (1), that mechanisms are present that cause resistance to 8AG only, in addition to that (or those) causing resistance to both drugs, and (2), that mutants with low HGPRT content survive on 8AG but not on 6TG medium, owing to lower affinity of 8AG for the enzyme. The second explanation was favoured as a result of various experimental approaches, including kinetics of expression on the 2 media, cross-resistance at different expression times and serial selection on the 2 media.  相似文献   

9.
Summary A clone of Vero cells resistant to up 20 μg/ml 8-azaguanine was isolated. This clone (designated Vero 153) has a doubling rate of approximately 24 h and a maximum cell density of 10,000/mm2. Deficiency of the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT) in Vero 153 was demonstrated by methods of radiochromatography. Vero 153 is susceptibletto hypoxanthine-thymidine-aminopterin (HAT) medium and its resistance to 8-azaguanine seems to be nonreversible. Like parenal cells, Vero 153 was also incapable of interferon production when challenged with Newcastle disease virus (NDV) or poly(inosinic acid) poly(cytidylic acid) (poly I:C). Similar chromasome complements (majority range 56 to 57) and band patterns were observed in cells harvested at Passages 10, 20, and 50. The potential use of Vero 153 for somatic cell hybridization for purposes of gene mapping, virus rescue, and the control of inteferon production is discussed. This project was supported by grant from the Medical Research Council, Canada (MT-1615).  相似文献   

10.
The development of a system for the detection of somatic cell mutation to hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) (EC 2.4.2.8) deficiency in L5178Y mouse lymphoma cells is described. The selection of mutant cells was not influenced by the concentration of the selective agent 6-thioguanine (6-TG). In addition, all the mutants selected, spontaneous as well as induced ones, showed a complete loss of HGPRT activity. In reconstruction experiments, in which mutant cells were mixed with wild-type cells, the recovery of mutant cells was only markedly influenced when wild-type cells were seeded in a cell density ten times higher than the one, 5-10(4) cells/ml, used in subsequent induction experiments. X-irradiation and treatment with ethyl methanesulfonate (EMS) increased in the mutation rate above the spontaneous background. A clear-cut dose-dependent mutagenic effect after exposure to X-rays was measured. The rate of induced mutations at the HGPRT locus in lymphoma cells was 1-3-10(-7) per R, as determined after exposures of 200, 300, 400, 500 and 600 R. The time the cells needed to express their mutations was much longer than 48 h. Further study of this phenomenon showed that the optimal expression time for TGr-resistant mutants in L5178Y cells was 6 to 7 days. No indication for a dose-dependent effect on the optimal expression of the mutants was found.  相似文献   

11.
12.
Whether resistance to purine analogues 8-azaguanine (AG) and 6-thioguanine (TG) in mammalian cells is due to gene mutation or to epigenetic changes was investigated by an ethyl methanesulfonate (EMS) dose-dependent induced “resistance” to these analogues in two near-diploid (2N) and one tetraploid (4N) Chinese hamster ovary (CHO) cells. EMS produced higher cell killing in 2N than in 4N cells. In the 2N cells, EMS-induced mutations to TG (1.7 μg/ml) resistance increased approximately as a linear function of the dose from 0–400 μg/ml. However, EMS was ineffective in inducing such mutation in the 4N cells. These observations are consistent with the notion that the induced TG resistance arose as a result of mutation at the gene or chromosome level. In each cell type, both the “observed” spontaneous and the EMS-induced frequency to purine analogue resistance decreased with increasing concentration of purine analogues. However, among the “resistant” clones a high proportion of those selected at 1.2 and 3.0 μg/ml of AG, a small portion selected at 7.5 μg/ml of AG, and virtually none at 1.7 and 6.0 μg/ml of TG are capable of growth in medium containing aminopterin (10 μM). This suggests that, under less stringent selective conditions, some resistant variants were being selected through mechanisms not yet defined.  相似文献   

13.
Three 6-thioguanine (6TG)-resistant mutants were mutagen-treated and selected for clones capable of growing in 2 selective media: HAT medium, containing aminopterin (AP) and HAS medium, containing L-azaserine (AS). Both 6TG-sensitive, wild-type clones and 6TG-resistant mutants were found among colonies growing in HAT medium, while only 6TG-sensitive clones grew in HAS medium. Time for expression was required by 6TG-resistant but not by 6TG-sensitive clones, that were fully expressed immediately after treatment. All HAT-resistant, 6TG-resistant clones which were analyzed proved to be resistant to AP. These data were interpreted as follows: in HAT medium, both HGPRT+ revertants and double mutants (HGPRT?, AP-resistant) were selected, while only HGPRT+ revertants were selected in HAS medium. Not all 6TG-resistant mutants were able to produce both classes of HAT-resistant clones.  相似文献   

14.
The human lymphoblast line MGL8 was treated with HAT and subsequently "mutagenized" with EMS (200 microgram/ml) to give 15% survival, and 6-thioguanine-resistant cells were selected by cloning in soft agarose containing the drug (1 microgram/ml). Eighteen sublines of independently derived resistant clones were isolated and studied in detail. One subline had a low residual HGPRT activity of about 1% of the parental cells. The HGPRT of this subline had a higher Km for PRPP, was more sensitive to heat, and was degraded faster by trypsin than the enzyme in extracts of MGL8 cells. This resistant subline and three others contained CRM levels of 1--38%, compared to the wild-type, so they probably represent true structural mutants of the HGPRT gene. All the variants maintained the karyotype of the parental line (46, XY, 6p-).  相似文献   

15.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [914-C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5–3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

16.
The resistance of Chinese hamster epithelial liver cells (CHEL) and Chinese hamster fibroblasts (V79) towards toxic purine analogues has been determined. The liver cells are more sensitive than fibroblasts to 6-thioguanine (6-TG), 8-azaguanine (8-AZ) and 2,6-diaminopurine (DAP). The hypoxanthine-guanine (HGPRT) and adenine phosphoribosyl transferase (APRT) activities of extracts of CHEL cells were lower than those of corresponding extracts of V79. The level of 5'-nucleotidase was about 5-fold higher in the epithelial cells. It appears that HGPRT and APRT activities of extracts of liver epithelial cells are masked or reduced by 5'-nucleotidase activity and other inhibitors. The significance of these findings is discussed.  相似文献   

17.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [9-14C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5-3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

18.
The cytotoxic effects of azaguanine and thioguanine have been compared in two wild-type V79 cells. To achieve equitoxic effects in both cell lines a 10–20-fold higher concentration of azaguanine than thioguanine was required. Affinity of HGPRT for azaguanine was 10-fold lower than for hypoxanthine in both cell lines and was similar to that for thioguanine in V79S cells. Affinity for thioguanine differed by a factor of 3 in the two cell lines. The rate of cell kill by azaguanine was markedly slower than by thioguanine in both cell lines. Reduction of whole cell uptake of [14C]hypoxanthine incorporation by unlabelled azaguanine was only demonstrable after prolonged incubation periods as was incorporation of [14C]azaguanine into acid-insoluble material. Experiments with cell-free extracts indicated that hypoxanthine acts as a non-competitive inhibitor of the enzyme. The slow rate of dissociation of the HGPRT—azaguanine complex is reflected in the slow rate of killing of wild-type cells. Clones resistant to the cytotoxic effects of these analogues have been selected from both cell lines and have been shown to possess HGPRT with altered kinetic properties. Our data suggest that azaguanine and thioguanine may select for mutations at different sites on the HGPRT molecule in V79 cells and provide possible explanations for the differences in effectiveness of these two agents reported in other cell lines.  相似文献   

19.
Skin fibroblasts (LNSV) derived from a hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient patient with the Lesch-Nyhan syndrome, who has glucose-6-phosphate dehydrogenase (G6PD) type A, were transformed with SV40 and hybridized with WI38 human diploid fibroblasts derived from a female embryo which have normal HGPRT and G6PD type B activities. The hybrid clones selected in hypoxanthine, aminopterin and thymidine (HAT) medium, were essentially tetraploid and contained three X and one Y chromosomes. These hybrids contained HGPRT, types A and B and the AB heteropolymeric form of G6PD enzymes which were indicative that in these cells X linked genes of both parental cells were fully active. Hybrids back-selected in medium containing 8-azaguanine (8-AG) contained only two X chromosomes. They had no HGPRT activity and they contained only G6PD type A enzyme. It is concluded that the hybrid cells which grew in the presence of 8-AG retained the X chromosome of the LNSV parental cell and apparently the inactive X of the WI 38 cell.  相似文献   

20.
Chinese hamster ovary cell mutants resistant to the purine analogs 6-thioguanine or 8-azaguanine have been isolated following mutagenesis with ethyl methane sulfonate. The activities of hypoxanthine phosphoribosyltransferase (HPRT) in three such mutants have been found to exhibit an increased Km for the substrate 5-phosphoribosyl-1-pyrophosphate. The isoelectric point of the mutant enzyme activity has also changed in two mutants. Hybrid cells containing one mutant and one wild-type allele express both genes. Segregants that have lost only the wild-type allele can be selected on the basis of drug resistance. Two mutants exhibiting different alterations in HPRT activity can complement in a hybrid cell to yield a wild-type growth pattern and enzyme activity with intermediate electrophoretic and kinetic properties. The results suggest intracistronic complementation between structural gene mutants of HPRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号