首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reversed-phase high-performance liquid chromatography method with electrospray ionization and mass spectral detection is described for the determination of capecitabine, 5'-deoxy-5-fluorocytidine and 5'-deoxy-5-fluorouridine in human plasma with 5-chloro-2'-deoxyuridine as the internal standard. An on-line sample clean-up procedure allows dilution of the plasma sample with the initial mobile phase. The linear dynamic range is 0.0500-10.0 microgram/ml for capecitabine, and 0.0500-25.0 microgram/ml for the metabolites, 5'-deoxy-5-fluorocytidine and 5'-deoxy-5-fluorouridine, respectively. This method has been used to analyze plasma samples from patients receiving capecitabine in combination with oxaliplatin.  相似文献   

2.
A novel method employing high-performance liquid chromatograph-mass spectrometry (LC-MS) has been developed and validated for the quantitation of plasma 2'-deoxyuridine (UdR). It involves a plasma clean-up step with strong anion-exchange solid-phase extraction (SAX-SPE) followed by HPLC separation and atmospheric pressure chemical ionization mass spectrometry detection (APCI-MS) in a selected-ion monitoring (SIM) mode. The ionization conditions were optimised in negative ion mode to give the best intensity of the dominant formate adduct [M+HCOO]- at m/z 273. Retention times were 7.5 and 12.5 min for 2'-deoxyuridine and 5-iodo-2'-deoxyuridine, an iodinated analogue internal standard (IS), respectively. Peak area ratios of 2'-deoxyuridine to IS were used for regression analysis of the calibration curve. The latter was linear from 5 to 400 nmol/l using 1 ml sample volume of plasma. The average recovery was 81.5% and 78.6% for 2'-deoxyuridine and 5-iodo-deoxyuridine, respectively. The method provides sufficient sensitivity, precision, accuracy and selectivity for routine analysis of human plasma 2'-deoxyuridine concentration with the lowest limit of quantitation (LLOQ) of 5 nmol/l. Clinical studies in cancer patients treated with the new fluoropyrimidine analogue capecitabine (N4-pentoxycarbonyl-5'-5-fluorocytidine) have shown that plasma 2'-deoxyuridine was significantly elevated after 1 week of treatment, consistent with inhibition of thymidylate synthase (TS). These findings suggest that the mechanism of antiproliferative toxicity of capecitabine is at least partly due to TS inhibitory activity of its active metabolite 5-fluoro-2'-deoxyuridine monophosphate (FdUMP). Monitoring of plasma UdR concentrations have the potential to help clinicians to guide scheduling of capecitabine or other TS inhibitors in clinical trials. Marked differences of plasma 2'-deoxyuridine between human and rodents have also been confirmed. In conclusion, the LC-MS method developed is simple, highly selective and sensitive and permits pharmacodynamic studies of TS inhibitors in several species.  相似文献   

3.
Capecitabine (N4-pentoxycarbonyl-5'-deoxy-5-fluorocytidine, Xeloda), a prodrug of 5-fluorouracil (5-FU), is an oral tumor-selective fluoropyrimidine carbamate approved in the treatment of colorectal and breast cancer. It has a preferential activation to 5-FU by thymidine phosphorilase (TP) in target tumor tissues through a series of three metabolic steps minimizing the exposure of normal tissues to 5-FU. It offers the potential of less gastrointestinal toxicity and advantages in terms of convenience and quality of life for the patient, in addition to cost-effectiveness as compared with intravenous 5-FU chemotherapy. We developed a high performance liquid chromatography assay for the determination of plasma capecitabine and its nucleoside metabolite concentrations and 5-FU catabolite dihydro-5-fluorouracil in a single step extraction and a single HPLC injection. The retention times of dihydro-5-fluorouracil, 5-FU, 5'-deoxy-5-fluorouridine (5'-DFUR) and capecitabine were 3.6, 4.4, 11.4 and 20.4 min, respectively and the internal standard retention times were 8.7 and 12.2 min for 5-bromouracil (5-BU) and tegafur, respectively. The limit of detection was 0.01 microg/ml for capecitabine and its nucleoside metabolites and the limit of quantification was 0.025 microg/ml. Extraction efficiency was >80% with a single solvent mixture extraction step for all analytes of interest. The assay had good precision, the within-day and between-day standard deviation of the mean (R.S.D.) being <10% in the linear range 0.025-10 microg/ml. The authors conclude that the method described here is ideally suited for the therapeutic monitoring of capecitabine and its metabolites.  相似文献   

4.
To identify an orally available fluoropyrimidine having efficacy and safety profiles greatly improved over those of parenteral 5-fluorouracil (5-FU: 1), we designed a 5-FU prodrug that would pass intact through the intestinal mucisa and be sequentially converted to 5-FU by enzymes that are highly expressed in the human liver and then in tumors. Among various N4-substituted 5'-deoxy-5-fluorocytidine derivatives, a series of N4-alkoxycarbonyl derivatives were hydrolyzed to 5'-deoxy-5-fluorocytidine (5'-DFCR: 8) specifically by carboxylesterase, which exists preferentially in the liver in humans and monkeys. Particularly, derivatives having an N4-alkoxylcarbonyl moiety with a C4-C6 alkyl chain were the most susceptible to the human carboxylesterase. Those were then converted to 5'-deoxy-5-fluorouridine (5'-DFUR: 4) by cytidine deaminase highly expressed in the liver and solid tumors and finally to 5-FU by thymidine phosphorylase (dThdPase) preferentially located in tumors. When administered orally to monkeys, a derivative having the N4-alkoxylcarbonyl moiety with a C5 alkyl chain (capecitabine: 6) The highest AUC and Cmax for plasma 5'-DFUR. In tests with various human cancer xenograft models, capecitabine was more efficacious at wider dose ranges than either 5-FU or 5'-DFUR and was significantly less toxic to the intestinal tract than the others in monkeys.  相似文献   

5.
A series of tumor-activated prodrugs of the inhibitors of dihydropyrimidine dehydrogenase (DPD), an enzyme catabolizing 5-fluorouracil (5-FU: 4g), has been designed and synthesized. RO0094889 (11c) is a prodrug of 5-vinyluracil (4c), a known DPD inhibitor, and was designed to generate 4c selectively in tumor tissues by sequential conversion of 11c by three enzymes: esterase, cytidine deaminase and thymidine phosphorylase, the latter two of which are known to be highly expressed in various tumor tissues. When capecitabine (1), a tumor-activated prodrug of 5-FU, was co-administered orally with 11c, 5-FU in tumor tissues was significantly increased with only a slight increase of 5-FU in plasma as compared with oral capecitabine alone.  相似文献   

6.
Capecitabine is a chemotherapeutic agent used for the treatment of patients with metastatic cancers. This study aimed at determining the drug capecitabine in a simple chemiluminescence (CL) system of acidic potassium permanganate using the stopped‐flow injection technique. Statistical methods were used to detect optimum conditions. The method showed two linear calibration ranges from 6.7 × 10?6 to 6.7 × 10?5 mol L?1 and from 6.7 × 10?5 to 2.7 × 10?3 mol L?1 with a detection limit of 1.5 × 10?6 mol L?1. Chitosan‐modified magnetic nanoparticles were studied in the drug‐delivery experiments. According to the pH sensitivity of chitosan and low pH values in tumour cells, the chitosan‐coated magnetic nanoparticles could provide a good targeting drug‐delivery system to tumour sites. To evaluate the applicability of the method, the capecitabine‐loaded magnetic chitosan nanoparticles were synthesized with two different cross‐linkers; loading and releasing rates of the drug were investigated using the proposed CL method and an ultraviolet–visible light spectrophotometric method (absorption at 305 nm). The results showed a good correlation between the two methods, and it was found that the synthesized chitosan‐modified magnetic nanoparticles could be used for pH‐dependent release of capecitabine in cancer cells. Moreover, determination of capecitabine in tablets and synthetic samples was performed.  相似文献   

7.
8.
BACKGROUND: Erlotinib is approved for the treatment of advanced pancreas cancer. We conducted a prospective trial to determine the safety profile and recommended phase 2 dose of erlotinib and capecitabine given concurrently with intensity-modulated radiation therapy (IMRT) in resected pancreatic cancer patients. The pharmacokinetic profile of this combination was also evaluated. METHODS: Patients with resected pancreatic adenocarcinoma received erlotinib and capecitabine concurrently with IMRT delivered at 1.8 Gy daily in 28 fractions (total = 50.4 Gy). The starting dose level (DL 1) was erlotinib 150mgdaily and capecitabine 800 mg/m2 twice daily without interruption. The next lower dose level (DL -1) was erlotinib 100 mg daily and capecitabine 800 mg/m2 twice daily (Monday to Friday). Plasma samples were obtained for pharmacokinetic analysis. RESULTS: Thirteen patients were enrolled in total. At DL 1, six of the seven treated patients were evaluable for toxicities. Four completed planned treatment, but all required treatment interruption or dose reduction. The dose-limiting toxicities were neutropenia, diarrhea, and rash. Six patients were subsequently enrolled to and completed planned treatment in DL-1. Themost common toxicities were fatigue, elevated liver enzymes, and anorexia. The pharmacokinetic parameters of erlotinib and OSI-420 were not significantly different in the presence or absence of capecitabine and were consistent with historical controls. CONCLUSIONS: When administered concurrently with IMRT, erlotinib 100 mg daily and capecitabine 800 mg/m2 twice daily (Monday to Friday) can be administered safely in resected pancreas cancer patients, and is the recommended regimen for efficacy studies using this regimen.  相似文献   

9.
The following paper represents a simple, highly sensitive, responsive validated and developed spectrofluorimetric method for estimation of imatinib (IMB) in its pure, commercial preparation, human urine and human blood plasma. The calibration curve was in the range 4–900 ng ml?1 for pure form and urine and 8–900 ng ml?1 for plasma in a medium contains carboxymethyl cellulose (CMC) and acetate buffer (pH 5) with excitation wavelength (λex) 230 nm and emission wavelength (λem) 307 nm. The limit of detection (LOD) was 0.37 ng ml?1 for the pure form, 0.64 ng ml?1 for human urine, and 0.70 ng ml?1 for human plasma, while the limit of quantitation (LOQ) was 1.2 for pure form, 1.91 for urine and 2.1 for plasma. The suggested method was successfully applied for evaluation of IMB in tablets within 99% mean percentage recovery. The excipients that are usually used as additives in pharmaceutical dosage form did not interfere with the suggested method. The method was efficiently used for estimation of IMB in human urine and human plasma. The effect of some cations that might be present in urine and plasma was also studied. The method was also focused on human volunteers and in vitro drug release.  相似文献   

10.
The ratio of concentration of chloride in the aqueous humor compared with that in the plasma of rabbits, dogs, and human beings, was determined by the Schales and Sendroy methods. Consistent results were obtained in all the experiments by the Schales method with or without protein, and by the Sendroy method without protein. In the presence of protein, however, lower chloride concentrations were found in the plasma of dogs and human beings by the Sendroy method. The ratios in this instance were higher than values predicted on the basis of Gibbs-Donnan equilibrium and similar to those obtained by several previous investigators using the same method. With rabbits both methods gave essentially the same results under all conditions. The ratios (Schales and Sendroy) for the rabbits based on arterial plasma averaged 0.98, on venous plasma 1.00; the ratio (Schales) for the dog for venous plasma was 1.00; the ratio (Schales, protein present or removed; Sendroy, protein removed) for human beings, based on venous plasma, was approximately 1.03. Ratios of 1.08 for the dog and 1.07 for human beings were obtained by the Sendroy method in the presence of protein. Possible explanations for these apparent discrepancies are discussed. In dogs and in human beings, the major evidence supports the contention that the aqueous humor/plasma chloride ratio is not in excess of that predicted by the Gibbs-Donnan equilibrium and therefore requires no special explanation. In the rabbit all the evidence indicates that the chloride ratios are actually less than the value predicted by the Gibbs-Donnan equilibrium.  相似文献   

11.
A high-performance liquid chromatographic method for the enantiospecific quantitation of S- and R-mephenytoin and its metabolites S- and R-nirvanol and S- and R-4'-hydroxymephenytoin in plasma is described. The compounds were separated using a reversed-phase C(2) column in tandem with a chiral alpha(1)-acid glycoprotein column and were detected using ultraviolet detection at 205 nm. The lower limit of quantification was 10 ng/ml for all compounds using 0.5 ml human plasma (intra-day coefficient of variation <13%, accuracy <+/-20%). The method was validated for human plasma in the concentration range 10-2000 ng/ml for each of the six compounds. The method allows for the simultaneous characterisation of the metabolic capacity of two human drug-metabolising enzymes, CYP2C19 and CYP2B6, and may be used when investigating polymorphisms or changes in activity of these two enzymes.  相似文献   

12.
A selective and sensitive method for analysis of perfluorooctanoic acid (PFOA) in human serum and plasma, utilizing liquid chromatography tandem mass spectrometry (LC-MS/MS), has been developed and thoroughly validated to satisfy strict FDA guidelines for bioanalytical methods. A simple, automated sample preparation procedure, involving extraction of the target analyte with acetonitrile on protein precipitation media in a 96-well plate format was developed, allowing efficient handling of large numbers of samples. The proposed method uses the calibration standards prepared in a surrogate matrix (rabbit serum or plasma) and (13)C-labeled PFOA as the internal standard to account for matrix effects, instrument drift, and extraction efficiency. Human serum and plasma could not be used for matrix matching of calibration standards as endogenous levels of PFOA observed in the control human serum and plasma significantly exceeded the targeted lower limit of quantitation (LLOQ) of the method. Precision and accuracy of the method were demonstrated by analysis of rabbit serum and plasma control samples fortified at 0.5, 5, and 40 ng/mL PFOA and human serum and plasma fortified at 1.0, 5.0, 40 ng/mL PFOA. The LLOQ of 0.5 ng/mL PFOA was experimentally demonstrated for rabbit and human serum and plasma. Within-day precision and accuracy, short-term stability, freeze-thaw stability, equivalence of response between PFOA and APFO (the ammonium salt of PFOA), and dilution of concentrated samples were also investigated. The results of the validation experiments comply with the precision and accuracy limits defined by the FDA guidance document: "Guidance for Industry, Bioanalytical Method Validation", May 2001.  相似文献   

13.
A selective and sensitive spectrofluorimetric method was developed and validated for the determination of amoxapine in human plasma and urine. The developed method is based on labeling with 5‐dimethylaminonaphthalene‐1‐sulfonyl chloride (dansyl chloride) and monitoring at 397 nm (excitation)/514 nm (emission). The method was validated for linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, recovery and robustness. The calibration curves were linear over a concentration range of 250–2500 and 50–1250 ng/mL for plasma and urine, respectively. The LOD values were calculated to be 13.31 and 13.17 ng/mL for plasma and urine, respectively. The proposed method was applied to study of amoxapine in human plasma and urine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and sensitive method for quantitation of HSR-609 (I) in human plasma and urine was developed using HPLC with the fluorescence labelling reagent 4-(N,N-dimethylaminosulfonyl)-7-N-piperazino-2,1,3-benzoxadiazole (DBD-PZ). Compound I was extracted from human plasma and urine, and derivatized by reaction with DBD-PZ in the presence of Mukaiyama reagent A, an equimolar solution of 2,2′-dipyridyl disulfide (DPDS) and triphenylphosphine (TPP) in acetonitrile. The reaction mixture was cleaned up by liquid-liquid extraction following the derivatization. The conjugate was analyzed by ion-pair HPLC with fluorometric detection. The quantitation limits for I were 0.5 ng/ml in plasma and 5 ng/ml in urine. Using this method, plasma concentration and urinary excretion of I were studied after oral administration of I to human volunteers.  相似文献   

15.
An analytical method is described for the quantification of S-nitrosoglutathione (GSNO), a potent physiological vasodilator and inhibitor of platelet aggregation, in the presence of a high excess of reduced glutathione (GSH). The method is based on the quantitative elimination of GSH by N-ethylmaleimide, the conversion of GSNO by 2-mercaptoethanol to GSH, its reaction with o-phthalaldehyde (OPA) to form a highly fluorescent and UV-absorbing tricyclic isoindole derivative, and subsequent high-performance liquid chromatographic (HPLC) separation with fluorescence and/or UV absorbance detection. The OPA derivatives of GSH and GSNO obtained by this method were found to be identical by mass spectrometry. GSH (up to 50 microM) did not interfere with the analysis of GSNO (up to 1000 nM). The limits of detection of the method for buffered aqueous solutions of GSNO were determined as 3 nM using fluorescence and 70 nM using UV absorbance detection. Isolation of GSNO by HPLC analysis (pH 7.0) of plasma ultrafiltrate samples (200 microl) prior to derivatization allows specific and artifact-free quantification of GSNO in human and rat plasma. Reduced and oxidized glutathione, nitrite, and cysteine did not interfere with the measurement of GSNO in human and rat plasma. The limit of quantitation (LOQ) of the combined method was determined as 100 nM of GSNO in human plasma ultrafiltrate using fluorescence detection. No endogenous GSNO could be detected in ultrafiltrate samples of plasma of 10 healthy humans at concentrations exceeding the LOQ of the method. After iv infusion of GSNO (125 micromol/kg body wt) in a rat for 20 min GSNO and GSH were detected in rat plasma at 60 and 130 microM, respectively. The method should be useful to investigate formation, metabolism, and reactions of GSNO in vitro and in vivo at physiologically relevant concentrations.  相似文献   

16.
The purpose of this study was develop and validate a sensitive and specific enantioselective liquid-chromatography/tandem mass spectrometry (LC-MS/MS) method, for the simultaneous quantification of eslicarbazepine acetate (ESL), eslicarbazepine (S-Lic), oxcarbazepine (OXC) and R-licarbazepine (R-Lic) in human plasma. Analytes were extracted from human plasma using solid phase extraction and the chromatographic separation was achieved using a mobile phase of 80% n-hexane and 20% ethanol/isopropyl alcohol (66.7/33.3, v/v). A Daicel CHIRALCEL OD-H column (5 μm, 50 mm × 4.6 mm) was used with a flow rate of 0.8 mL/min, and a run time of 8 min. ESL, S-Lic, R-Lic, OXC and the internal standard, 10,11-dihydrocarbamazepine, were quantified by positive ion electrospray ionization mass spectrometry. The method was fully validated, demonstrating acceptable accuracy, precision, linearity, and specificity in accordance with FDA regulations for the validation of bioanalytical methods. Linearity was proven over the range of 50.0-1000.0 ng/mL for ESL and OXC and over the range of 50.0-25,000.0 ng/mL for S-Lic and R-Lic. The intra- and inter-day coefficient of variation in plasma was less than 9.7% for ESL, 6.0% for OXC, 7.7% for S-Lic and less than 12.6% for R-Lic. The accuracy was between 98.7% and 107.2% for all the compounds quantified. The lower limit of quantification (LLOQ) was 50.0ng/mL for ESL, S-Lic, OXC and R-Lic in human plasma. The short-term stability in plasma, freeze-thaw stability in plasma, frozen long-term stability in plasma, autosampler stability and stock solution stability all met acceptance criteria. The human plasma samples, collected from 8 volunteers, showed that this method can be used for therapeutic monitoring of ESL and its metabolites in humans treated with ESL.  相似文献   

17.
Alkylphenols, 4-nonylphenol (NP) and 4-tert-octylphenol (OP), in human urine and plasma samples were analyzed using stir bar sorptive extraction (SBSE) in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The method involved correction by stable isotopically labeled surrogate standards, 4-(1-methyl)octylphenol-d5 (m-OP-d5) and deuterium 4-tert-octylphenol (OP-d). A biological sample was extracted for 60 min at room temperature (25 degrees C) using a stir bar coated with a 500 microm thick polydimethylsiloxane (PDMS) layer. Then, the stir bar was analyzed by TD-GC-MS in the selected ion monitoring (SIM) mode without any derivatization step. The average recoveries in human urine and plasma samples spiked with NP and OP at levels of 0.5 and 10 ng ml-1 were between 95.8 and 99.8% with correction using the added surrogate standards. The limits of quantitation were 0.2 ng ml-1 for NP and 0.02 ng ml-1 for OP. We measured the background levels of NP and OP in five human urine and three human plasma samples from healthy volunteers. NP and OP were not detected in all human urine samples (N.D. < 0.2 ng ml-1 for NP, and N.D. < 0.02 ng ml-1 for OP). However, 0.2-0.3 ng ml-1 for NP and 0.1-0.2 ng ml-1 for OP in human plasma samples were observed by this method.  相似文献   

18.
A high throughput bioanalytical method based on solid phase extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS), has been developed for the estimation of perindopril and its metabolite perindoprilat, an angiotensin-converting enzyme inhibitor in human plasma. Ramipril was used as internal standard (IS). The extraction of perindopril, perindoprilat and ramipril from the plasma involved treatment with phosphoric acid followed by solid phase extraction (SPE) using hydrophilic lipophilic balance HLB cartridge. The SPE eluate without drying were analyzed by LC-MS/MS, equipped with turbo ion spray (TIS) source, operating in the negative ion and selective reaction monitoring (SRM) acquisition mode to quantify perindopril and perindoprilat in human plasma. The total chromatographic run time was 1.5 min with retention time for perindopril, perindoprilat and ramipril at 0.33, 0.35 and 0.30 min. The developed method was validated in human plasma matrix, with a sensitivity of 0.5 ng/ml (CV, 7.67%) for perindopril and 0.3 ng/ml (CV, 4.94%) for perindoprilat. This method was extensively validated for its accuracy, precision, recovery, stability studies and matrix effect especially because the pattern of elution of all the analytes appears as flow injection elution. Sample preparation by this method yielded extremely clean extracts with very good and consistent mean recoveries; 78.29% for perindopril, 76.32% for perindoprilat and 77.72% for IS. The response of the LC-MS/MS method for perindopril and perindoprilat was linear over the range 0.5-350.0 ng/ml for perindopril and 0.3-40 ng/ml for perindoprilat with correlation coefficient, r>/=0.9998 and 0.9996, respectively. The method was successfully applied for bioequivalence studies in human subjects samples with 4 mg immediate release (IR) formulations.  相似文献   

19.
A sensitive and selective method is described for the determination of artemether and its active dihydroartemisinin metabolite in human plasma using artemisinin as internal standard. The method consists of a liquid-liquid extraction with subsequent evaporation of the supernatant to dryness followed by the analysis of the reconstituted sample by liquid chromatography-mass spectrometry (LC-MS) in single ion monitoring mode using atmospheric pressure chemical ionization (APCI) as an interface. Chromatography was performed on a C(18) reversed-phase column using acetonitrile-glacial acetic acid 0.1% (66:34) as a mobile phase. The method was fully validated over a concentration range of 5-200 ng/ml using 0.5 ml of human plasma per assay. Stability assessment was also included. The method was applied to the quantification of artemether and its metabolite in human plasma of healthy volunteers participating in pharmacokinetic drug-drug interaction studies.  相似文献   

20.
A quantitative analytical method using automated on-line solid phase extraction (SPE) and liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) for the determination of 8-OHdG (8-hydroxy-2'-deoxyguanosine) in human plasma was developed and validated. A one-step membrane extraction method for the plasma sample preparation and a C18 SPE column with simple extraction and purification were used for the on-line extraction. A C18 column was employed for LC separation and ESI-MS/MS was utilized for detection. (15)N(5)-8-OHdG ((15)N(5)-8-hydroxy-2'-deoxyguanosine) was used as an internal standard for quantitative determination. The extraction, clean-up and analysis procedures were controlled by a fully automated six-port switch valve as one strategy to reduce the matrix effect and simultaneously improve detection sensitivity. Identification and quantification were based on the following transitions: m/z 284→168 for 8-OHdG and m/z 289→173 for (15)N(5)-8-OHdG. Satisfactory recovery was obtained, and the recovery ranged from 95.1 to 106.1% at trace levels in human plasma and urine, with a CV lower than 5.4%. Values for intraday and interday precision were between 2.3 and 6.8% for plasma and between 2.7 and 4.5% for urine, respectively. Values for the method accuracy of intraday and interday assays ranged from 93.0 and 100.5% for plasma and 110.2 and 119.4% for urine, respectively. The limits of detection (LOD) and LOQ were 0.008 ng/mL and 0.02 ng/mL, respectively.The applicability of this newly developed method was demonstrated by analysis of human plasma samples for an evaluation of the future risk of oxidative stress status in human exposure to nanoparticles and other diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号