首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

PINK1 is a mitochondria-targeted kinase that constitutively localizes to both the mitochondria and the cytosol. The mechanism of how PINK1 achieves cytosolic localization following mitochondrial processing remains unknown. Understanding PINK1 subcellular localization will give us insights into PINK1 functions and how mutations in PINK1 lead to Parkinson's disease. We asked how the mitochondrial localization signal, the transmembrane domain, and the kinase domain participate in PINK1 localization.  相似文献   

2.
《Autophagy》2013,9(2):315-316
Mutations in PTEN-induced putative kinase 1 (PINK1) and PARK2/Parkin cause autosomal recessive forms of Parkinson disease. In mammalian cells, cytosolic Parkin is selectively recruited to depolarized mitochondria, followed by a stimulation of mitochondrial autophagy. We show that Parkin translocation to mitochondria is mediated by PINK1, even in cells with normal mitochondrial membrane potential (ΔΨm). Once at the mitochondria, Parkin is in close proximity to PINK1, but Parkin does not catalyze PINK1 ubiquitination nor does PINK1 phosphorylate Parkin. However, co-overexpression of Parkin and PINK1 collapses the normal tubular mitochondrial network into large mitochondrial perinuclear clusters, many of which are surrounded by autophagic vacuoles. Our results suggest that Parkin and PINK1 modulate mitochondrial trafficking to the perinuclear region, a subcellular area associated with autophagy. Mutations in either Parkin or PINK1 impair this process and, consequently, mitochondrial turnover may be altered, inducing accumulation of defective mitochondria and, ultimately, causing neurodegeneration in Parkinson disease.  相似文献   

3.
Mutations in the PTEN induced putative kinase 1 (PINK1) gene cause an autosomal recessive form of Parkinson disease (PD). So far, no substrates of PINK1 have been reported, and the mechanism by which PINK1 mutations lead to neurodegeneration is unknown. Here we report the identification of TNF receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone also known as heat shock protein 75 (Hsp75), as a cellular substrate for PINK1 kinase. PINK1 binds and colocalizes with TRAP1 in the mitochondria and phosphorylates TRAP1 both in vitro and in vivo. We show that PINK1 protects against oxidative-stress-induced cell death by suppressing cytochrome c release from mitochondria, and this protective action of PINK1 depends on its kinase activity to phosphorylate TRAP1. Moreover, we find that the ability of PINK1 to promote TRAP1 phosphorylation and cell survival is impaired by PD-linked PINK1 G309D, L347P, and W437X mutations. Our findings suggest a novel pathway by which PINK1 phosphorylates downstream effector TRAP1 to prevent oxidative-stress-induced apoptosis and implicate the dysregulation of this mitochondrial pathway in PD pathogenesis.  相似文献   

4.
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function.  相似文献   

5.
Parkinson disease (PD) is the second most prevalent neurodegenerative disorder, and thus elucidation of the pathogenic mechanism and establishment of a fundamental cure is essential in terms of public welfare. Fortunately, our understanding of the pathogenesis of two types of recessive familial PDs—early-onset familial PD caused by dysfunction of the PTEN-induced putative kinase 1 (PINK1) gene and autosomal recessive juvenile Parkinsonism (ARJP) caused by a mutation in the Parkin gene—has evolved and continues to expand.Key words: PINK1, parkin, ubiquitin, mitochondria, autophagy, mitophagy, membrane potential, quality controlSince the cloning of PINK1 and Parkin, numerous papers have been published about the corresponding gene products, but the mechanism by which dysfunction of PINK1 and/or Parkin causes PD remain unclear. Parkin encodes a ubiquitin ligase E3, a substrate recognition member of the ubiquitination pathway, whereas PINK1 encodes a mitochondria-targeted serine-threonine kinase that contributes to the maintenance of mitochondrial integrity. Based on their molecular functions, it is clear that Parkin-mediated ubiquitination and PINK1 phosphorylation are key events in disease pathogenesis. The underlying mechanism, however, is not as well defined and claims of pathogenicity, until recently, remained controversial. Although Parkin''s E3 activity was clearly demonstrated in vitro, we were unable to show a clear E3 activity of Parkin in cell/in vivo. In addition, despite a predicted mitochondrial localization signal for PINK1, we were unable to detect PINK1 on mitochondria by either immunoblotting or immunocytochemistry. More confusingly, overexpression of nontagged PINK1 mainly localized to the cytoplasm under steady state conditions.Work by Dr. Youle''s group at the National Institutes of Health in 2008, however, offered new insights. They reported that Parkin associated with depolarized mitochondria and that Parkin-marked mitochondria were subsequently cleared by autophagy. Soon after their publication, we also examined the function of Parkin and PINK1 following a decrease in mitochondrial membrane potential. Our findings, described below (Fig. 1), have contributed to the development of a mechanism explaining pathogenicity.Open in a separate windowFigure 1Model of mitochondrial quality control mediated by PINK1 and Parkin. Under steady-state conditions, the mature 60 kDa PINK1 is constantly cleaved by an unknown protease to a 50 kDa intermediate form that is subsequently degraded, presumably by the proteasome (upper part). The protein, however, is stabilized on depolarized mitochondria because the initial processing event is inhibited by a decrease in mitochondrial membrane potential (lower part). Accumulated PINK1 recruits cytosolic Parkin onto depolarized mitochondria resulting in activation of its E3 activity. Parkin then ubiquitinates a mitochondrial substrate(s). As a consequence, damaged mitochondria are degraded via mitophagy. Ub, ubiquitin.(1) We sought to determine the subcellular localization of endogenous PINK1, and realized that endogenous PINK1 is barely detectable under steady-state conditions. However, a decrease in mitochondrial membrane-potential following treatment with the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) results in the gradual accumulation of endogenous PINK1 on mitochondria. Importantly, when CCCP is washed out, the accumulated endogenous PINK1 rapidly disappears (within 30 min) both in the presence and absence of cycloheximide. These results support the hypothesis that PINK1 is constantly transported to the mitochondria, but is rapidly degraded in a membrane potential-dependent manner (see below for details). We speculate that PINK1 is stabilized by a decrease in mitochondrial membrane potential and as a result accumulates on depolarized mitochondria.(2) We examined the potential role of PINK1 in the mitochondrial recruitment of Parkin. In control MEFs (PINK1+/+), Parkin is selectively recruited to the mitochondria following CCCP treatment, and subsequently results in the selective disappearance of the mitochondria via autophagy (called mitophagy). In sharp contrast, Parkin is not translocated to the mitochondria in PINK1 knockout (PINK1−/−) MEFs following CCCP treatment, and subsequent mitochondrial degradation is also completely impeded. These results suggest that PINK1 is “a Parkin-recruitment factor” that recruits Parkin from the cytoplasm to damaged mitochondria in a membrane potential-dependent manner for mitophagy.(3) We monitored the E3 activity of Parkin using an artificial pseudo-substrate fused to Parkin in cells. Parkin''s E3 activity was repressed under steady-state conditions; however, we find that Parkin ubiquitinates the pseudo-substrate when it is retrieved to the depolarized mitochondria, suggesting that activation of the latent Parkin E3 activity is likewise dependent on a decrease in mitochondrial membrane potential.(4) PINK1 normally exists as either a long (approximately 60 kDa) or a short (approximately 50 kDa) protein. Because the canonical mitochondrial targeting signal (matrix targeting signal) is cleaved after import into the mitochondria, the long form has been designated as the precursor and the short form as the mature PINK1. However, our subcellular localization study of endogenous PINK1 following CCCP treatment shows that the long form is recovered in the mitochondrial fraction, suggesting that it is not the pre-import precursor form. Moreover, by monitoring the degradation process of PINK1 following recovery of membrane potential, we realized that the short form of PINK1 transiently appears soon after CCCP is washed out and then later disappears, suggesting that the processed form of PINK1 is an intermediate in membrane-potential-dependent degradation. In conclusion, these results imply that PINK1 cleavage does not reflect a canonical maturation process accompanying mitochondrial import as initially thought, but rather represents constitutive degradation in healthy mitochondria by a two-step mechanism; i.e., first limited processing and subsequent complete degradation probably via the proteasome.(5) PINK1 accumulation by decrease of membrane potential and subsequent recruitment of Parkin onto mitochondria are presumably etiologically important because they are impeded for the most part by disease-linked mutations of PINK1 or Parkin.These results, together with reports by other groups, strongly suggest that recessive familial PD is caused by dysfunction of quality control for depolarized mitochondria.At present, we do not know whether the aforementioned pathogenic mechanism of recessive familial PD can be generalized to prevalent sporadic PD. However, the clinical symptoms of recessive familial PD caused by dysfunction of PINK1 or Parkin resembles that of idiopathic PD except early-onset pathogenesis, and thus it is plausible that there is a common pathogenic mechanism. We accordingly believe that our results provide solid insight into the molecular mechanisms of PD pathogenesis, not only for familial forms caused by Parkin and PINK1 mutations, but also the major sporadic form of PD.To fully understand the molecular mechanism of PINK1-Parkin-mediated mitophagy, further details need to be addressed including: identifying the protease(s) that processes PINK1 in a mitochondrial membrane-potential dependent manner and that presumably monitors mitochondrial integrity; identifying a physiological substrate(s) of PINK1; determining the molecular mechanism underlying Parkin activation; and identifying the protein(s) linking Parkin-mediated ubiquitination to mitophagy. A detailed mechanism of the aforementioned events will be the focus of future research, however, we feel our conclusion that PINK1 and Parkin function in the removal of depolarized mitochondria is evident and hope that our studies will provide a solid foundation for further studies.  相似文献   

6.
Mutations in PINK1 (PTEN-induced putative kinase 1) are tightly linked to autosomal recessive Parkinson disease (PD). Although more than 50 mutations in PINK1 have been discovered, the role of these mutations in PD pathogenesis remains poorly understood. Here, we characterized 17 representative PINK1 pathogenic mutations in both mammalian cells and Drosophila. These mutations did not affect the typical cleavage patterns and subcellular localization of PINK1 under both normal and damaged mitochondria conditions in mammalian cells. However, PINK1 mutations in the kinase domain failed to translocate Parkin to mitochondria and to induce mitochondrial aggregation. Consistent with the mammalian data, Drosophila PINK1 mutants with mutations in the kinase domain (G426D and L464P) did not genetically interact with Parkin. Furthermore, PINK1-null flies expressing the transgenic G426D mutant displayed defective phenotypes with increasing age, whereas L464P mutant-expressing flies exhibited the phenotypes at an earlier age. Collectively, these results strongly support the hypothesis that the kinase activity of PINK1 is essential for its function and for regulating downstream Parkin functions in mitochondria. We believe that this study provides the basis for understanding the molecular and physiological functions of various PINK1 mutations and provides insights into the pathogenic mechanisms of PINK1-linked PD.  相似文献   

7.
PTEN-induced putative kinase 1 (PINK1) and Parkin, encoded by their respective genes associated with Parkinson’s disease (PD), are linked in a common pathway involved in the protection of mitochondrial integrity and function. However, the mechanism of their interaction at the biochemical level has not been investigated yet. Using both mammalian and Drosophila systems, we here demonstrate that the PINK1 kinase activity is required for its function in mitochondria. PINK1 regulates the localization of Parkin to the mitochondria in its kinase activity-dependent manner. In detail, Parkin phosphorylation by PINK1 on its linker region promotes its mitochondrial translocation, and the RING1 domain of Parkin is critical for this occurrence. These results demonstrate the biochemical relationship between PINK1, Parkin, and the mitochondria and thereby suggest the possible mechanism of PINK-Parkin-associated PD pathogenesis.  相似文献   

8.
The subcellular compartmentalization of kinase activity allows for regulation of distinct cellular processes involved in cell differentiation or survival. The PTEN‐induced kinase 1 (PINK1), which is linked to Parkinson's disease, is a neuroprotective kinase localized to cytosolic and mitochondrial compartments. While mitochondrial targeting of PINK1 is important for its activities regulating mitochondrial homeostasis, the physiological role of the cytosolic pool of PINK1 remains unknown. Here, we demonstrate a novel role for cytosolic PINK1 in neuronal differentiation/neurite maintenance. Over‐expression of wild‐type PINK1, but not a catalytically inactive form of PINK1(K219M), promoted neurite outgrowth in SH‐SY5Y cells and increased dendritic lengths in primary cortical and midbrain dopaminergic neurons. To identify the subcellular pools of PINK1 involved in promoting neurite outgrowth, we transiently transfected cells with PINK1 constructs designed to target PINK1 to the outer mitochondrial membrane (OMM‐PINK1) or restrict PINK1 to the cytosol (ΔN111‐PINK1). Both constructs blocked cell death associated with loss of endogenous PINK1. However, transient expression of ΔN111‐PINK1, but not of OMM‐PINK1 or ΔN111‐PINK1(K219M), promoted dendrite outgrowth in primary neurons, and rescued the decreased dendritic arborization of PINK1‐deficient neurons. Mechanistically, the cytosolic pool of PINK1 regulated neurite morphology through enhanced anterograde transport of dendritic mitochondria and amplification of protein kinase A‐related signaling pathways. Our data support a novel role for PINK1 in regulating dendritic morphogenesis.

  相似文献   


9.
Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation.  相似文献   

10.
Following our identification of PTEN-induced putative kinase 1 (PINK1) gene mutations in PARK6-linked Parkinson's disease (PD), we have recently reported that PINK1 protein localizes to Lewy bodies (LBs) in PD brains. We have used a cellular model system of LBs, namely induction of aggresomes, to determine how a mitochondrial protein, such as PINK1, can localize to aggregates. Using specific polyclonal antibodies, we firstly demonstrated that human PINK1 was cleaved and localized to mitochondria. We demonstrated that, on proteasome inhibition with MG-132, PINK1 and other mitochondrial proteins localized to aggresomes. Ultrastructural studies revealed that the mechanism was linked to the recruitment of intact mitochondria to the aggresome. Fractionation studies of lysates showed that PINK1 cleavage was enhanced by proteasomal stress in vitro and correlated with increased expression of the processed PINK1 protein in PD brain. These observations provide valuable insights into the mechanisms of LB formation in PD that should lead to a better understanding of PD pathogenesis.  相似文献   

11.
线粒体质量控制对于线粒体网络的稳态和线粒体功能的正常发挥具有重要意义。三磷酸腺苷酶家族蛋白3A(ATAD3A)是同时参与调节线粒体结构功能、线粒体动力学和线粒体自噬等重要生物学过程的线粒体膜蛋白之一。近期研究表明,ATAD3A既可与Mic60/Mitofilin和线粒体转录因子A (TFAM)等因子相互作用以维持线粒体嵴的形态和氧化磷酸化功能,又能与发动蛋白相关蛋白1 (Drp1)结合而正性/负性调节线粒体分裂,还可作为线粒体外膜转位酶(TOM)复合物和线粒体内膜转位酶(TIM)复合物之间的桥接因子而介导PTEN诱导激酶(PINK1)输入线粒体进行加工,显示出促自噬或抗自噬活性。本文对ATAD3A在调控线粒体质量控制中的作用及其机制进行了综述。  相似文献   

12.
Mitochondrial fission is essential for the degradation of damaged mitochondria. It is currently unknown how the dynamin-related protein 1 (DRP1)–associated fission machinery is selectively targeted to segregate damaged mitochondria. We show that PTEN-induced putative kinase (PINK1) serves as a pro-fission signal, independently of Parkin. Normally, the scaffold protein AKAP1 recruits protein kinase A (PKA) to the outer mitochondrial membrane to phospho-inhibit DRP1. We reveal that after damage, PINK1 triggers PKA displacement from A-kinase anchoring protein 1. By ejecting PKA, PINK1 ensures the requisite fission of damaged mitochondria for organelle degradation. We propose that PINK1 functions as a master mitophagy regulator by activating Parkin and DRP1 in response to damage. We confirm that PINK1 mutations causing Parkinson disease interfere with the orchestration of selective fission and mitophagy by PINK1.  相似文献   

13.
Parkinson's disease (PD), the most prevalent neurodegenerative movement disorder, is characterized by an age-dependent selective loss of dopaminergic (DA) neurons. Although most PD cases are sporadic, more than 20 responsible genes in familial cases were identified recently. Genetic studies using Drosophila models demonstrate that PINK1, a mitochondrial kinase encoded by a PD-linked gene PINK1, is critical for maintaining mitochondrial function and integrity. This suggests that mitochondrial dysfunction is the main cause of PD pathogenesis. Further genetic and cell biological studies revealed that PINK1 recruits Parkin, an E3 ubiquitin ligase encoded by another PD-linked gene parkin, to mitochondria and regulates the mitochondrial remodeling process via the Parkin-mediated ubiquitination of various mitochondrial proteins. PINK1 also directly phosphorylates the mitochondrial proteins Miro and TRAP1, subsequently inhibiting mitochondrial transport and mitochondrial oxidative damage, respectively. Moreover, recent Drosophila genetic analyses demonstrate that the neuroprotective molecules Sir2 and FOXO specifically complement mitochondrial dysfunction and DA neuron loss in PINK1 null mutants, suggesting that Sir2 and FOXO protect mitochondria and DA neurons downstream of PINK1. Collectively, these recent results suggest that PINK1 plays multiple roles in mitochondrial quality control by regulating its mitochondrial, cytosolic, and nuclear targets.  相似文献   

14.
A hybrid precursor protein constructed by fusing the mitochondrial matrix-targeting signal of rat preornithine carbamyl transferase to murine cytosolic dihydrofolate reductase (designated pO-DHFR) was expressed in Escherichia coli. Following purification under denaturing conditions, pO-DHFR was capable of membrane translocation when diluted directly into import medium containing purified mitochondria but lacking cytosolic extracts. This import competence was lost with time, however, when the precursor was diluted and preincubated in medium lacking mitochondria, unless cytosolic proteins (provided by rabbit reticulocyte lysate) were present. Identical results were obtained for purified precursor made by in vitro translation. The ability of the cytosolic proteins to maintain the purified precursor in an import-competent state was sensitive to protease, N-ethylmaleimide (NEM), and was heat labile. Further, this activity appeared to be signal sequence dependent. ATP was not required for the maintenance of pO-DHFR competence, nor did purified 70-kDa heat shock protein (the constitutive form of Hsp70) substitute for this activity. Interestingly, however, purified Hsp70 prevented aggregation of the precursor in an ATP-dependent manner and, as well, retarded the apparent rate and extent of pO-DHFR folding. Partial purification of reticulocyte lysate proteins indicated that competence activity resides within a large mass protein fraction (200-250 kDa) that contains Hsp70. Sucrose density gradient analysis revealed that pO-DHFR reversibly interacts with components of this fraction. Pretreatment of the fraction with NEM, however, significantly stabilized the subsequent formation of a complex with the precursor. The results indicate that Hsp70 can retard precursor polypeptide folding and prevent precursor aggregation; however, by itself, Hsp70 cannot confer import competence to pO-DHFR. Maintenance of import competence correlates with interactions between the precursor and an NEM-sensitive cytosolic protein fraction. Efficient dissociation of the precursor from this complex appears to require a reactive thiol moiety on the cytosolic protein(s).  相似文献   

15.
Mutations in PTEN-induced kinase 1 (PINK1) are associated with a familial syndrome related to Parkinson's disease (PD). We previously reported that stable neuroblastoma SH-SY5Y cell lines with reduced expression of endogenous PINK1 exhibit mitochondrial fragmentation, increased mitochondria-derived superoxide, induction of compensatory macroautophagy/mitophagy and a low level of ongoing cell death. In this study, we investigated the ability of protein kinase A (PKA) to confer protection in this model, focusing on its subcellular targeting. Either: (1) treatment with pharmacological PKA activators; (2) transient expression of a constitutively active form of mitochondria-targeted PKA; or (3) transient expression of wild-type A kinase anchoring protein 1 (AKAP1), a scaffold that targets endogenous PKA to mitochondria, reversed each of the phenotypes attributed to loss of PINK1 in SH-SY5Y cells, and rescued parameters of mitochondrial respiratory dysfunction. Mitochondrial and lysosomal changes in primary cortical neurons derived from PINK1 knockout mice or subjected to PINK1 RNAi were also reversed by the activation of PKA. PKA phosphorylates the rat dynamin-related protein 1 isoform 1 (Drp1) at serine 656 (homologous to human serine 637), inhibiting its pro-fission function. Mimicking phosphorylation of Drp1 recapitulated many of the protective effects of AKAP1/PKA. These data indicate that redirecting endogenous PKA to mitochondria can compensate for deficiencies in PINK1 function, highlighting the importance of compartmentalized signaling networks in mitochondrial quality control.  相似文献   

16.
PTEN induced kinase 1 (PINK1) is a serine/threonine kinase in the outer membrane of mitochondria (OMM), and known as a responsible gene of Parkinson''s disease (PD). The precursor of PINK1 is synthesized in the cytosol and then imported into the mitochondria via the translocase of the OMM (TOM) complex. However, a large part of PINK1 import mechanism remains unclear. In this study, we examined using cell-free system the mechanism by which PINK1 is targeted to and assembled into mitochondria. Surprisingly, the main component of the import channel, Tom40 was not necessary for PINK1 import. Furthermore, we revealed that the import receptor Tom70 is essential for PINK1 import. In addition, we observed that although PINK1 has predicted mitochondrial targeting signal, it was not processed by the mitochondrial processing peptidase. Thus, our results suggest that PINK1 is imported into mitochondria by a unique pathway that is independent of the TOM core complex but crucially depends on the import receptor Tom70.  相似文献   

17.
Confocal microscopy images revealed that the tetratricopeptide repeat motif (TPR) domain immunophilin FKBP51 shows colocalization with the specific mitochondrial marker MitoTracker. Signal specificity was tested with different antibodies and by FKBP51 knockdown. This unexpected subcellular localization of FKBP51 was confirmed by colocalization studies with other mitochondrial proteins, biochemical fractionation, and electron microscopy imaging. Interestingly, FKBP51 forms complexes in mitochondria with the glucocorticoid receptor and the Hsp90/Hsp70-based chaperone heterocomplex. Although Hsp90 inhibitors favor FKBP51 translocation from mitochondria to the nucleus in a reversible manner, TPR domain-deficient mutants of FKBP51 are constitutively nuclear and fully excluded from mitochondria, suggesting that a functional TPR domain is required for its mitochondrial localization. FKBP51 overexpression protects cells against oxidative stress, whereas FKBP51 knockdown makes them more sensitive to injury. In summary, this is the first demonstration that FKBP51 is a major mitochondrial factor that undergoes nuclear-mitochondrial shuttling, an observation that may be related to antiapoptotic mechanisms triggered during the stress response.  相似文献   

18.
Accumulating evidence indicates that dysfunction of mitochondria is a common feature of Parkinson disease. Functional loss of a familial Parkinson disease-linked gene, BRPK/PINK1 (PINK1), results in deterioration of mitochondrial functions and eventual neuronal cell death. A mitochondrial chaperone protein has been shown to be a substrate of PINK1 kinase activity. In this study, we demonstrated that PINK1 has another action point in the cytoplasm. Phosphorylation of Akt at Ser-473 was enhanced by overexpression of PINK1, and the Akt activation was crucial for protection of SH-SY5Y cells from various cytotoxic agents, including oxidative stress. Enhanced Akt phosphorylation was not due to activation of phosphatidylinositol 3-kinase but due to activation of mammalian target of rapamycin complex 2 (mTORC2) by PINK1. Rictor, a specific component of mTORC2, was phosphorylated by overexpression of PINK1. Furthermore, overexpression of PINK1 enhanced cell motility. These results indicate that PINK1 exerts its cytoprotective function not only in mitochondria but also in the cytoplasm through activation of mTORC2.  相似文献   

19.
《Autophagy》2013,9(11):1801-1817
Loss-of-function mutations in PARK2/PARKIN and PINK1 cause early-onset autosomal recessive Parkinson disease (PD). The cytosolic E3 ubiquitin-protein ligase PARK2 cooperates with the mitochondrial kinase PINK1 to maintain mitochondrial quality. A loss of mitochondrial transmembrane potential (ΔΨ) leads to the PINK1-dependent recruitment of PARK2 to the outer mitochondrial membrane (OMM), followed by the ubiquitination and proteasome-dependent degradation of OMM proteins, and by the autophagy-dependent clearance of mitochondrial remnants. We showed here that blockade of mitochondrial protein import triggers the recruitment of PARK2, by PINK1, to the TOMM machinery. PD-causing PARK2 mutations weakened or disrupted the molecular interaction between PARK2 and specific TOMM subunits: the surface receptor, TOMM70A, and the channel protein, TOMM40. The downregulation of TOMM40 or its associated core subunit, TOMM22, was sufficient to trigger OMM protein clearance in the absence of PINK1 or PARK2. However, PARK2 was required to promote the degradation of whole organelles by autophagy. Furthermore, the overproduction of TOMM22 or TOMM40 reversed mitochondrial clearance promoted by PINK1 and PARK2 after ΔΨ loss. These results indicated that the TOMM machinery is a key molecular switch in the mitochondrial clearance program controlled by the PINK1-PARK2 pathway. Loss of functional coupling between mitochondrial protein import and the neuroprotective degradation of dysfunctional mitochondria may therefore be a primary pathogenic mechanism in autosomal recessive PD.  相似文献   

20.
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号