首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑曲霉固态发酵及酶解玉米皮   总被引:2,自引:0,他引:2  
以玉米提取淀粉后的玉米皮渣为主要原料,采用黑曲霉固态发酵法产酶再酶解的二步法降解玉米皮中纤维素类物质。经Plackett-Burman法及响应面设计优化发酵条件得:温度30℃,接种量10%,初始水分体积分数60%,物料厚度2.47 cm,初始pH 5.79,发酵时间6 d;滤纸比酶活可达11.01 U/g,较原始酶活提高了40.61%;产酶结束后加入pH 4.8醋酸-醋酸钠缓冲液,置于50℃下酶解144 h,中性洗涤纤维与酸性洗涤纤维降解率分别为46.09%、48.82%,还原糖质量分数达到9.02%。  相似文献   

2.
Liu YT  Luo ZY  Long CN  Wang HD  Long MN  Hu Z 《New biotechnology》2011,28(6):733-737
To produce cellulolytic enzyme efficiently, Penicillium decumbens strain L-06 was used to prepare mutants with ethyl methane sulfonate (EMS) and UV-irradiation. A mutant strain ML-017 is shown to have a higher cellulase activity than others. Box-Behnken's design (BBD) and response surface methodology (RSM) were adopted to optimize the conditions of cellulase (filter paper activity, FPA) production in strain ML-017 by solid-state fermentation (SSF) with rice bran as the substrate. And the result shows that the initial pH, moisture content and culture temperature all have significant effect on the production of cellulase. The optimized condition shall be initial pH 5.7, moisture content 72% and culture temperature 30°C. The maximum cellulase (FPA) production was obtained under the optimized condition, which is 5.76 IU g(-1), increased by 44.12% to its original strain. It corresponded well with the calculated results (5.15 IU g(-1)) by model prediction. The result shows that both BBD and RSM are the cellulase optimization methods with good prospects.  相似文献   

3.
以酸性纤维素酶产生菌绿色木霉(Trichoderma viride)WL0512作为原始出发菌株,首先经自然分离筛选出一株产酶较稳定的菌株TVN-18,其羧甲基纤维素酶活(CMC酶活)达2765.8U/g,滤纸酶活(FPA酶活)达48.5U/g。再经真空微波和甲基磺酸乙酯(EMS)逐级诱变处理,获得了一株高产、稳产酸性纤维素酶的E6—1菌株,其CMC酶活达4396.6U/g,FPA酶活达126.0U/g,分别是菌株TVN-18的1.59倍和2.60倍。通过对固态发酵培养基麸皮和稻草比例、料水比以及初始pH值的优化,突变株的产酶能力进一步得到提高,其产的CIVIC酶活和FPA酶活分别提高了22.3%和22.4%。  相似文献   

4.
Gao J  Weng H  Zhu D  Yuan M  Guan F  Xi Y 《Bioresource technology》2008,99(16):7623-7629
The production of extracellular cellulases by a newly isolated thermoacidophilic fungus, Aspergillus terreus M11, on the lignocellulosic materials was studied in solid-state fermentation (SSF). The results showed that the high-level cellulase activity was produced at 45 degrees C pH 3 and moisture 80% with corn stover and 0.8% yeast extract as carbon and nitrogen sources. 581 U endoglucanase activity, 243 U filter paper activity and 128 U beta-glucosidase activity per gram of carbon source were obtained in the optimal condition. Endoglucanase and beta-glucosidase exhibited their maximum activity at pH 2 and pH 3, respectively, and both of them showed remarkable stability in the range of pH 2-5. The activities of endoglucanase and beta-glucosidase were up to the maximum at 70 degrees C and maintained about 65% and 53% of their original activities after incubation at 70 degrees C for 6h. The enzyme preparations from this strain were used to hydrolyze Avicel. Higher hydrolysis yields of Avicel were up to 63% on 5% Avicel (w/v) for 72 h with 20 U FPase/g substrate.  相似文献   

5.
Solid-state fermentation (SSF) is a bioprocess that doesn’t need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.  相似文献   

6.
The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.  相似文献   

7.
The present study is aimed at simultaneous cellulase synthesis and coir pith degradation by Aspergillus nidulans using coir pith as chief substrate. The lignocellulosic biomass, coir pith is known to be an excellent carbon source for microbial cellulase production under solid state fermentation. The alkali pretreatment with sodium hydroxide was seen to enhance enzymatic hydrolysis. The effect of coir pith weight, moisture content, initial pH and growth temperature on cellulase activity and yield were investigated by response surface methodology (RSM) employing a four-factor-five-level central composite design (CCD). The results of Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD) and Scanning electron microscopy (SEM) of coir pith showed structural changes through pretreatment, in favor of enzymatic hydrolysis. Maximum carboxy methyl cellulase activity (CMCase) of 28.64 U/g and cellulase yield of 66.32% were achieved with 8 g coir pith at 70% moisture content and 40 °C temperature with pH 5 as evident from run numbers 25 and 30. Filter paper (FPase) and cellobiase (CBase) activities of 10.23 U/g and 4.31 U/g respectively were observed on the 11th day after the inoculation.  相似文献   

8.
毛壳霉CQ31的鉴定及固体发酵产木聚糖酶条件的优化   总被引:2,自引:0,他引:2  
从土壤中筛选出一株产木聚糖酶的真菌CQ31, 经鉴定后命名为毛壳霉CQ31。该菌能够利用几种农业废弃物固体发酵高产木聚糖酶, 玉米杆为最佳碳源。单因素优化试验表明: 以玉米杆为碳源, 胰蛋白胨为氮源, 初始水分含量80%, 初始pH值9.0为最佳产酶条件。在优化后的条件下培养7 d产木聚糖酶水平高达4897 U/g干基碳源, 此时甘露聚糖酶酶活达803 U/g干基碳源。因此, 毛壳霉CQ31固体发酵产木聚糖酶和甘露聚糖酶具有一定的工业化应用前景。  相似文献   

9.
The aim of the present work was to investigate the feasibility of jackfruit seed powder as a substrate for the production of pigments by Monascus purpureus in solid-state fermentation (SSF). A pigment yield of 25ODUnits/g dry fermented substrate was achieved by employing jackfruit seed powder with optimized process parameters such as 50% initial moisture content, incubation temperature 30 degrees C, 9x10(4)spores/g dry substrate inoculum and an incubation period of seven days. The color of the pigments was stable over a wide range of pH, apparently due to the buffering nature of the substrate, which could be a significant point for its scope in food applications. To the best of our knowledge this is the first report on pigment production using jackfruit seed powder in solid-state fermentation (SSF).  相似文献   

10.
Peng X  Chen H 《Bioresource technology》2008,99(9):3885-3889
Microsphaeropsis sp. was used to produce SCO in solid-state fermentation (SSF) from a substrate consisting of steam-exploded wheat straw (SEWS) and wheat bran (WB). The yield of SCO was 42 mg/g dry substrate (gds) without adding cellulase. To achieve a higher SCO yield, cellulase was added to the solid-state medium, resulting in an increase of SCO from 42 to 74 mg/gds with a cellulase loading of 10 FPU/gds. Other SSF parameters such as ratio of SEWS to WB of the dry substrate, initial moisture content, and incubation temperature were optimized under the condition of cellulase loading of 10 FPU/gds. So optimized, the SCO yield was 80 mg/gds, and the SCO content of the dry fermented mass was 10.2%. This research explored a novel method to produce SCO from the abundant and cheap agricultural residues - wheat straw and wheat bran.  相似文献   

11.
A lignocellulosic decomposing fungus Z5 was isolated and identified as Aspergillus fumigatus, its capacity to produce cellulase was assessed under solid-state fermentation (SSF) using lignocellulosic materials as substrates. Cultivation conditions of A. fumigatus Z5 for cellulase production were optimized, results showed that for carboxymethyl cellulase (CMCase) and filter paper enzyme (FPase), the best condition was 50 °C, 80% initial moisture, initial pH 4.0 and 7% initial inoculum, the average activity of CMCase activity, FPase activity reached 526.3 and 144.6 U g−1 dry weight (dw) respectively, much higher than most of previous reports of this genus. Optimal temperature and pH for the CMCase activity of the crude enzyme were found to be 50 °C and 5.0, respectively. Zymogram analysis showed that eight kinds of CMCase were secreted by A. fumigatus Z5 when cellulose-containing materials were supplied in the culture. The crude enzyme secreted by the strain was further applied to hydrolyze pretreated corn stover and the enzymatic hydrolysate was used as substrate for ethanol production by Saccharomyces cerevisiae. The yield of bio-ethanol was 0.112 g g−1 dry substrate (gDS), suggesting that it is a promising fungus in the bio-ethanol production process.  相似文献   

12.
绿色木霉ZY-1固态发酵产纤维素酶   总被引:1,自引:0,他引:1  
利用筛选的绿色木霉ZY-1(Trichoderma viride ZY-1)固态发酵产纤维素酶,采用稻草和麸皮为底物,考察稻草与麸皮比例随发酵时间对产酶的影响。结果表明:底物中,在m(稻草):m(麸皮)为0:5和1:4时,发酵48h,pH保持4.5左右,还原糖量急剧上升,胞外蛋白产量最低;仅以稻草作底物时,整个发酵过程中pH约为7,还原糖量最低,胞外蛋白产量较高而滤纸酶活、羧甲基纤维素酶(CMCase)和β-葡萄糖苷酶(β-Gase)酶活均较低;在m(稻草):m(麸皮)为3:2时,发酵96h,滤纸酶活达最大值5.01U/g干曲;m(稻草):m(麸皮)为1:4时,发酵96h,β-Gase酶活达最大值4.6U/g干曲;m(稻草):m(麸皮)为4:1时,发酵72h,CMCase酶活达最大值6.01U/g干曲。因此,底物中存在适量的稻草和麸皮有利于Trichoderma viride ZY—1产纤维素酶。  相似文献   

13.
Trichokonins are peptaibols produced by Trichoderma koningii SMF2. The main isoforms are Trichokonin VI, Trichokonin VII and Trichokonin VIII. The solid-state fermentation (SSF) was applied for the production of Trichokonin VI. The fermentation factors, which included inoculum size, incubation temperature, initial moisture content and initial pH, were investigated and optimized by response surface methodology. The maximum Trichokonin VI production (4.07mg/g dry substrate) was achieved by employing inoculum size of 18%, incubation temperature at 24.3 degrees C, initial moisture content of 77.5% and initial pH at 5.0. Furthermore, gel filtration and preparative HPLC were used for separation of Trichokonin VI from a crude extract of the T. koningii SMF2 culture. With this preparative purification protocol under optimized fermentation conditions, 146.20mg Trichokonin VI was obtained from 1kg solid cultures. It has been shown that the obtained Trichokonin VI is more than 95% in purity. This is the first report on optimization of peptaibols production in SSF with high content. An efficient method for the preparative purification of Trichokonin VI is also proposed.  相似文献   

14.
Response surface methodology (RSM) was used to evaluate the effects of fermentation parameters for cellulase production by Trichoderma reesei QM9414 and T. reesei MCG77 in solid-state fermentation using rice bran as substrate. Initial pH, moisture content and temperature were optimized using filter paper activity (FPA) as response. Statistical analysis of the results for T. reesei QM9414 showed that only moisture content had significant effect on cellulase activity and had a linear effect on enzyme activity (maximum enzyme activities were obtained at 70% moisture content). The results for T. reesei MCG77 showed that temperature and moisture content were the most significant parameters for cellulase activity. The optimum cellulase production was in the temperature range of 25-30 degrees C and moisture content between 55% and 70%. After the optimization, the FPA in T. reesei MCG77 was increased by 2.5 folds compared to that of T. reesei QM9414.  相似文献   

15.
Aspergillus ficuum TUB F-1165 and Rhizopus oligosporus TUB F-1166 produced extra-cellular phytase during solid-state fermentation (SSF) using polystyrene as inert support. Maximal enzyme production (10.07 U/g dry substrate (U/gds) for A. ficuum and 4.52 U/gds for R. oligosporus) was observed when SSF was carried out with substrate pH 6.0 and moisture 58.3%, incubation temperature 30 degrees C, inoculum size of 1.3 x 10(7) spores/5 g substrate, for 72 h for A. ficuum and with substrate pH 7.0 and moisture 58.3%, incubation temperature 30 degrees C, inoculum size of 1 x 10(6) spores/5 g substrate for 96 h for R. oligosporus. Results indicated scope for production of phytase using polystyrene as inert support.  相似文献   

16.
The optimization of nutrient levels for chitinase production by Enterobacter sp. NRG4 in solid-state fermentation conditions (SSF) was carried out using response surface methodology (RSM) based on central composite design (CCD). The design was employed by selecting wheat bran-to-flake chitin ratio, moisture level, inoculum size, and incubation time as model factors. The results of first-order factorial design experiments showed that all four independent variables have significant effects on chitinase production. The optimum concentrations for chitinase production were wheat bran-to-flake chitin ratio, 1; moisture level, 80%; inoculum size, 2.6 mL; and incubation time, 168 h. Using this statistical optimization method, chitinase production was found to increase from 616 U · g−1 dry weight of solid substrate to 1475 U · g−1 dry weight of solid substrate.  相似文献   

17.
The aim of this study was to efficiently convert oil palm empty fruit bunch fiber (OPEFB), one of the most commonly generated lingo-wastes in Southeast Asia, into both cellulase and bioethanol. The unprocessed cellulase crude (37.29 %) produced under solid-state fermentation using OPEFB as substrate showed a better reducing sugar yield using filter paper than the commercial enzyme blend (34.61 %). Organosolv pretreatment method could efficiently reduce hemicellulose (24.3–18.6 %) and lignin (35.2–22.1 %) content and increase cellulose content (40.5–59.3 %) from OPEFB. Enzymatic hydrolysis of pretreated OPEFB using the crude cellulase with 20 % solid content, enzyme loading of 15 FPU/g OPEFB at 50 °C, and pH 5.5 resulted in a OPEFB hydrolysate containing 36.01 g/L glucose after 72 h. Fermentation of the hydrolysate medium produced 17.64 g/L ethanol with 0.49 g/g yield from glucose and 0.088 g/g yield from OPEFB at 8 h using Saccharomyces cerevisiae.  相似文献   

18.
Cellulase production from lignocellulosic materials was studied in solid-state cultivation by both static and mixed techniques under nonaseptic conditions. The effects of fermentation conditions, such as moisture content, pH, temperature, and aeration, on cellulase production by Trichoderma harzianum using a mixture of wheat straw (80%) and bran (20%) were investigated. With a moisture content of 74% and a pH of 5.8., 18 IU filter paper activity and 198 IU endoglucanase activity/g initial substrate content were obtained in 66 h. The extension from static column cultivation to stirred tank reactor of 65 L capacity gave similar yields of cellulase.  相似文献   

19.
Deoiled Jatropha seed cake was assessed for its suitability as substrate for enzyme production by solid-state fermentation (SSF). Solvent tolerant Pseudomonas aeruginosa PseA strain previously reported by us was used for fermentation. The seed cake supported good bacterial growth and enzyme production (protease, 1818 U/g of substrate and lipase, 625 U/g of substrate) as evident by its chemical composition. Maximum protease and lipase production was observed at 50% substrate moisture, a growth period of 72 and 120 h, and a substrate pH of 6.0 and 7.0, respectively. Enrichment with maltose as carbon source increased protease and lipase production by 6.3- and 1.6-fold, respectively. Nitrogen supplementation with peptone for protease and NaNO(3) for lipase production also enhanced the enzyme yield reaching 11,376 U protease activity and 1084 U lipase activity per gram of Jatropha seed cake. These results demonstrated viable approach for utilization of this huge biomass by solid-state fermentation for the production of industrial enzymes. This offers significant benefit due to low cost and abundant availability of cake during biodiesel production.  相似文献   

20.
Production of α-amylase in a laboratory-scale packed-bed bioreactor by Bacillus sp. KR-8104 under solid-state fermentation (SSF) with possibility of temperature control and monitoring was studied using wheat bran (WB) as a solid substrate. The simultaneous effects of aeration rate, initial substrate moisture, and incubation temperature on α-amylase production were evaluated using response surface methodology (RSM) based on a Box-Behnken design. The optimum conditions for attaining the maximum production of α-amylase were 37°C, 72% (w/w) initial substrate moisture, and 0.15 L/min aeration. The average enzyme activity obtained under the optimized conditions was 473.8 U/g dry fermented substrate. In addition, it was observed that the production of enzyme decreased from the bottom of the bioreactor to the top.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号