首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central complement inhibitor factor I (FI) degrades activated complement factors C4b and C3b in the presence of cofactors such as C4b-binding protein, factor H, complement receptor 1, and membrane cofactor protein. FI is a serine protease composed of two chains. The light chain comprises the serine protease domain, whereas the heavy chain contains several domains; that is, the FI and membrane attack complex domain (FIMAC), CD5, low density lipoprotein receptor 1 (LDLr1) and LDLr2 domains. To understand better how FI acts as a complement inhibitor, we used homology-based models of FI domains to predict potential binding sites. Specific amino acids were then mutated to yield 16 well expressed mutants, which were then purified from media of eukaryotic cells for functional analyses. The Michaelis constant (Km) of all FI mutants toward a small substrate was not altered, whereas some mutants showed increased maximum initial velocity (Vmax). All the mutations in the FIMAC domain affected the ability of FI to degrade C4b and C3b irrespective of the cofactor used, whereas only some mutations in the CD5 and LDLr1/2 domains had a similar effect. These same mutants also showed impaired binding to C3met. In conclusion, the FIMAC domain appears to harbor the main binding sites important for the ability of FI to degrade C4b and C3b.  相似文献   

2.
C4b-binding protein (C4BP) inhibits all pathways of complement activation, acting as a cofactor to the serine protease factor I (FI) in the degradation of activated complement factors C4b and C3b. C4BP is a disulfide-linked polymer of seven alpha-chains and a unique beta-chain, the alpha- and beta-chains being composed of eight and three complement control protein (CCP) domains, respectively. In previous studies we have localized cofactor activity and binding of C4b to alpha-chain CCP1-3 of C4BP, whereas the binding of C3b required additionally CCP4. Likewise, introduced point mutations that decreased binding of C4b/C3b caused a decrease in cofactor activity. In the present study, we describe two mutants of C4BP, K126Q/K128Q and F144S/F149S, clustered on alpha-chain CCP3, which selectively lost their ability to act as cofactors in the cleavage of both C4b and C3b. Both mutants show the same binding affinity for C4b/C3b as measured by surface plasmon resonance and have the same inhibitory effect on formation and decay of the classical pathway C3-convertase as the wild type C4BP. It appears that C4b and C3b do not undergo the same conformational changes upon binding to the C4BP mutants as during the interaction with the wild type C4BP, which then results in the observed loss of the cofactor activity.  相似文献   

3.
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.  相似文献   

4.
Complement inhibition is to a large extent achieved by proteolytic degradation of activated complement factors C3b and C4b by factor I (FI). This reaction requires a cofactor protein that binds C3b/C4b. We found that the cofactor activity of C4b-binding protein towards C4b/C3b and factor H towards C3b increase at micromolar concentrations of Zn(2+) and are abolished at 2 mM Zn(2+) and above. 65Zn(2+) bound to C3b and C4b molecules but not the cofactors or FI when they were immobilized in a native form on a nitrocellulose membrane. Zn(2+) binding constants for C3met (0.2 microM) and C4met (0.1 microM) were determined using fluorescent chelator. It appears that higher cofactor activity at low zinc concentrations is due to an increase of affinity between C4b/C3b and cofactor proteins as assessed by surface plasmon resonance. Inhibition of the reaction seen at higher concentrations is due to aggregation of C4b/C3b.  相似文献   

5.
Human membrane cofactor protein (MCP, CD46) is a 45-70 kDa protein with genetic and tissue-specific heterogeneity, and is expressed on all nucleated cells. MCP consists from N-terminus of 4 short consensus repeats (SCRs), 1-3 serine/threonine-rich (ST) domains, a transmembrane domain (TM) and a cytoplasmic tail (CYT). More than 8 isoforms are generated secondary to alternative splicing due to combinations of various exons encoding the ST, TM and CYT domains. It serves as a cofactor of serine protease factor I for inactivation of complement C3b and C4b. Its primary role is to protect host cells from homologous complement attack by inactivating C3b/C4b deposited on the membrane. It also acts as receptors for measles virus (MV), some kinds of bacteria and for a putative ligand on oocytes. MV infection causes temporal host immune suppression, which may appear secondary to signaling events through MCP on macrophages and dendritic cells. These functional properties of human MCP may facilitate xenotransplantation and may be useful in the generation of animal models of measles by creating human MCP-expressing animals.  相似文献   

6.
The complement system is an ancient innate immune defense pathway that plays a front line role in eliminating microbial pathogens. Recognition of foreign targets by antibodies drives sequential activation of two serine proteases, C1r and C1s, which reside within the complement Component 1 (C1) complex. Active C1s propagates the immune response through its ability to bind and cleave the effector molecule complement Component 4 (C4). Currently, the precise structural and biochemical basis for the control of the interaction between C1s and C4 is unclear. Here, using surface plasmon resonance, we show that the transition of the C1s zymogen to the active form is essential for C1s binding to C4. To understand this, we determined the crystal structure of a zymogen C1s construct (comprising two complement control protein (CCP) domains and the serine protease (SP) domain). These data reveal that two loops (492–499 and 573–580) in the zymogen serine protease domain adopt a conformation that would be predicted to sterically abrogate C4 binding. The transition from zymogen to active C1s repositions both loops such that they would be able to interact with sulfotyrosine residues on C4. The structure also shows the junction of the CCP1 and CCP2 domains of C1s for the first time, yielding valuable information about the exosite for C4 binding located at this position. Together, these data provide a structural explanation for the control of the interaction with C1s and C4 and, furthermore, point to alternative strategies for developing therapeutic approaches for controlling activation of the complement cascade.  相似文献   

7.
Factor I (fI) is a major regulator of complement. As a protease it has very restricted specificity, cleaving only C3b or C4b in the presence of a cofactor such as factor H (fH). Cleavage of C3b by fI yields iC3b, a major opsonin. The cleavage occurs through the formation of a ternary complex between the enzyme, the substrate, and the cofactor. The catalytic subunit of fI, the SP domain, accommodates substrate recognition and cleavage. The role of the fI heavy chain within the catalysis complex is unknown. Using partial proteolysis and affinity chromatography an intact form of the SP domain was generated and isolated from fI in high yield. fI and the SP domain were found to have similar amidolytic activities but strikingly different proteolytic activities on C3(NH(3)). fI did not cleave C3(NH(3)) in the absence of fH, while in its presence it cleaved C3(NH(3)) rapidly at two sites. The SP domain, however, slowly cleaved C3(NH(3)) in the absence of fH, at more than two sites. Cleavage by the SP domain was inhibited, not stimulated, by fH. Pefabloc SC and antipain inhibited the proteolytic activity of both fI and the SP domain, but suramin inhibited only fI and not the SP domain. The contrast in the proteolytic activities suggests that the heavy chain domains and the cofactor must have roles in orienting the natural substrates and restricting cleavage to the two sites which yield iC3b through a highly specific catalysis.  相似文献   

8.
Vaccinia virus encodes a structural and functional homolog of human complement regulators named vaccinia virus complement control protein (VCP). This four-complement control protein domain containing secretory protein is known to inhibit complement activation by supporting the factor I-mediated inactivation of complement proteins, proteolytically cleaved form of C3 (C3b) and proteolytically cleaved form of C4 (C4b) (termed cofactor activity), and by accelerating the irreversible decay of the classical and to a limited extent of the alternative pathway C3 convertases (termed decay-accelerating activity [DAA]). In this study, we have mapped the VCP domains important for its cofactor activity and DAA by swapping its individual domains with those of human decay-accelerating factor (CD55) and membrane cofactor protein (MCP; CD46). Our data indicate the following: 1) swapping of VCP domain 2 or 3, but not 1, with homologous domains of decay-accelerating factor results in loss in its C3b and C4b cofactor activities; 2) swapping of VCP domain 1, but not 2, 3, or 4 with corresponding domains of MCP results in abrogation in its classical pathway DAA; and 3) swapping of VCP domain 1, 2, or 3, but not 4, with homologous MCP domains have marked effect on its alternative pathway DAA. These functional data together with binding studies with C3b and C4b suggest that in VCP, domains 2 and 3 provide binding surface for factor I interaction, whereas domain 1 mediates dissociation of C2a and Bb from the classical and alternative pathway C3 convertases, respectively.  相似文献   

9.
Candida albicans binds and utilizes human complement inhibitors, such as C4b-binding protein (C4BP), Factor H, and FHL-1 for immune evasion. Here, we identify Candida pH-regulated antigen 1 (Pra1) as the first fungal C4BP-binding protein. Recombinant Pra1 binds C4BP, as shown by ELISA and isothermal titration calorimetry, and the Pra1-C4BP interaction is ionic in nature. The Pra1 binding domains within C4BP were localized to the complement control protein domain 4 (CCP4), CCP7, and CCP8. C4BP bound to Pra1 maintains complement-inhibitory activity. C4BP and Factor H bind simultaneously to Candida Pra1 and do not compete for binding at physiological levels. A Pra1-overexpressing C. albicans strain, which had about 2-fold Pra1 levels at the surface acquired also about 2-fold C4BP to the surface, compared with the wild type strain CAI4. A Pra1 knock-out strain showed ~22% reduced C4BP binding. C4BP captured by C. albicans from human serum inhibits C4b and C3b surface deposition and also maintains cofactor activity. In summary, Candida Pra1 represents the first fungal C4BP-binding surface protein. Pra1, via binding to C4BP, mediates human complement control, thereby favoring the immune and complement evasion of C. albicans.  相似文献   

10.
ST14 (suppression of tumorigenicity 14) is a transmembrane serine protease that contains a serine protease catalytic (SP) domain, an SEA domain, two complement subcomponent C1r/s (CUB) domains, and four low density lipoprotein receptor class A domains. Glutathione S-transferase fusion proteins with SP, CUB, and low density lipoprotein receptor domains and their corresponding mutants were generated to analyze protein interactions with these domains. Modified glutathione S-transferase pull-down assays demonstrated the interaction between the SP domain and hepatocyte growth factor activator inhibitor-1. With the same method, a CUB domain-interacting protein was isolated and turned out to be the transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1). Quantitative real time PCR revealed that the expression of the TMEFF1 gene was dependent on the transfection of the ST14 gene in the RKO cell line. Our results also suggested that ST14 and TMEFF1 were co-expressed in the human breast cancer cell line MCF7, human placenta, kidney, and liver tissues. Interestingly, these two genes were co-up-regulated in kidney tumors versus normal tissues, consistent with our results that showed the dependence of TMEFF1 expression on ST14 in RKO cells. Finally, homology modeling studies suggested that TMEFF1 might form a complex with ST14 by an interaction between epidermal growth factor and CUB domains.  相似文献   

11.
Streptococcus pyogenes AP1, a strain of the highly virulent M1 serotype, uses exclusively protein H to bind the complement inhibitor C4b-binding protein (C4BP). We found a strong correlation between the ability of AP1 and its isogenic mutants lacking protein H to inhibit opsonization with complement C3b and binding of C4BP. C4BP bound to immobilized protein H or AP1 bacteria retained its cofactor activity for degradation of 125I-C4b. Furthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments, which did not occur on strains unable to bind C4BP. Recombinant C4BP mutants, which (i) lack certain CCP domains or (ii) have mutations in single aa as well as (iii) mutants with additional aa between different CCP domains were used to determine that the binding is mainly mediated by a patch of positively charged amino acid residues at the interface of domains CCP1 and CCP2. Using recombinant protein H fragments, we narrowed down the binding site to the N-terminal domain A. With a peptide microarray, we identified one single 18-amino acid-long peptide comprising residues 92–109, which specifically bound C4BP. Biacore was used to determine KD = 6 × 10−7 m between protein H and a single subunit of C4BP. C4BP binding also correlated with elevated levels of adhesion and invasion to endothelial cells. Taken together, we identified the molecular basis of C4BP-protein H interaction and found that it is not only important for decreased opsonization but also for invasion of endothelial cells by S. pyogenes.  相似文献   

12.
Proteolytic inactivation of C4b is a crucial step for regulation of the classical complement pathway. A plasma protease factor I and membrane cofactors, C3b/C4b receptor (CR1) and membrane cofactor protein (MCP), participate in the regulation of cell-bound C4b although the physiological potency of these cofactors remains unknown. We have examined the optimal conditions of the factor I-mediated C4b regulatory system using purified cofactors. CR1 being a cofactor at a cofactor/C4b ratio less than 0.1 (w/w), fluid phase C4b, and methylamine-treated C4 (C4ma) were degraded by factor I into C4bi: minimal Cd4 was generated in the fluid phase. Liposome-bound C4b (LAC4b), on the other hand, was degraded into C4c and C4d. CR1 showed two optimal pHs (6.0 and 7.5) for fluid phase C4b, but one (6.0) for LAC4b, and in both cases low conductivity conditions enhanced the C4bi generation. CR1 cofactor activity was barely influenced by the NP-40 concentration. On the other hand, MCP degraded C4b and C4ma, as a factor I-cofactor, more efficiently into C4c and C4d. Though MCP cofactor activity, like that of CR1, was enhanced under low conductivity conditions, it has only one optimal pH, 6.0, in both fluid and solid phases. Furthermore, as in the case of C3b cleavage, a sufficient NP-40 concentration to solubilize membrane was needed for MCP to express full cofactor activity for C4b, in contrast to CR1. MCP was less potent for C4b inactivation than for C3b inactivation, while CR1 acted as a slightly more effective cofactor for C4b cleavage than for C3b cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Human C4b-binding protein (C4bp) facilitates the factor I-mediated proteolytic cleavage of the active forms of complement effectors C3b and C4b into their inactive forms. C4bp comprises a disulfide-linked heptamer of alpha-chains with complement (C) regulatory activity and a beta-chain. Each alpha-chain contains 8 short consensus repeat (SCR) domains. Using SCR-deletion mutants of recombinant multimeric C4bp, we identified the domains responsible for the C3b/C4b-binding and C3b/C4b-inactivating cofactor activity. The C4bp mutant with deletion of SCR2 lost the C4b-binding ability, as judged on C3b/C4b-Sepharose binding assaying and ELISA. In contrast, the essential domains for C3b-binding extended more to the C-terminus, exceeding SCR4. Using fluid phase cofactor assaying and deletion mutants of C4bp, SCR2 and 3 were found to be indispensable for C4b cleavage by factor I, and SCR1 contributed to full expression of the factor I-mediated C4b cleaving activity. On the other hand, SCR1, 2, 3, 4, and 5 participated in the factor I-cofactor activity for C3b cleavage, and SCR2, 3, and 4 were absolutely required for C3b inactivation. Thus, different sets of SCRs participate in C3b and C4b inactivation, and the domain repertoire supporting C3b cofactor activity is broader than that supporting C4b inactivation by C4bp and factor I. Furthermore, the domains participating in C3b/C4b binding are not always identical to those responsible for cofactor activity. The necessity of the wide range of SCRs in C3b inactivation compared to C4b inactivation by C4bp and factor I may reflect the physiological properties of C4bp, which is mainly directed to C4b rather than C3b.  相似文献   

14.
Adherence of group A streptococcus (GAS) to keratinocytes is mediated by an interaction between human CD46 (membrane cofactor protein) with streptococcal cell surface M protein. CD46 belongs to a family of proteins that contain structurally related short consensus repeat (SCR) domains and regulate the activation of the complement components C3b and/or C4b. CD46 possesses four SCR domains and the aim of this study was to characterize their interaction with M protein. Following confirmation of the M6 protein-dependent interaction between GAS and human keratinocytes, we demonstrated that M6 protein binds soluble recombinant CD46 protein and to a CD46 construct containing only SCRs 3 and 4. M6 protein did not bind to soluble recombinant CD46 chimeric proteins that had the third and/or fourth SCR domains replaced with the corresponding domains from another complement regulator, CD55 (decay-accelerating factor). Homology-based molecular modeling of CD46 SCRs 3 and 4 revealed a cluster of positively charged residues between the interface of these SCR domains similar to the verified M protein binding sites on the plasma complement regulators factor H and C4b-binding protein. The presence of excess M6 protein did not inhibit the cofactor activity of CD46 and the presence of excess C3b did not inhibit the ability of CD46 to bind M6 protein by ELISA. In conclusion, 1) adherence of M6 GAS to keratinocytes is M protein dependent and 2) a major M protein binding site is located within SCRs 3 and 4, probably at the interface of these two domains, at a site distinct from the C3b-binding and cofactor site of CD46.  相似文献   

15.
The C-terminal fragment, Bb, of factor B combines with C3b to form the pivotal C3-convertase, C3bBb, of alternative complement pathway. Bb consists of a von Willebrand factor type A (vWFA) domain that is structurally similar to the I domains of integrins and a serine protease (SP) domain that is in inactive conformation. The structure of the C3bBb complex would be important in deciphering the activation mechanism of the SP domain. However, C3bBb is labile and not amenable to X-ray diffraction studies. We engineered a disulfide bond in the vWFA domain of Bb homologous to that shown to lock I domains in active conformation. The crystal structures of Bb(C428-C435) and its inhibitor complexes reveal that the adoption of the "active" conformation by the vWFA domain is not sufficient to activate the C3-convertase catalytic apparatus and also provide insights into the possible mode of C3-convertase activation.  相似文献   

16.
Trypsin-like serine proteases are involved in diverse biological processes such as complement activation, tissue remodeling, cellular migration, tumor invasion, and metastasis. Here we report a novel human C1r-like serine protease analog, CLSPa, derived from dendritic cells (DC). The 487-residue CLSPa protein contains a CUB domain and a serine protease domain, possessing characteristic catalytic triad but lacking typical activation/cleavage sequence. It shares great homology with complement C1r/C1s and mannose-associated serine proteases. CLSPa mRNA is widely expressed, especially abundant in placenta, liver, kidney, pancreas, and myeloid cells, which are a major resources of serine proteases. Upon stimulation by agonistic anti-CD40 Ab, TNF-alpha, or LPS, CLSPa mRNA expression was significantly up-regulated in monocytic cells and monocyte-derived immature DC. When overexpressed in 293T cells, CLSPa protein was synthesized into the culture supernatants as a secretory protein, which had an inhibitory effect on complement-mediated cytotoxicity to antibody-sensitized erythrocytes. However, CLSPa itself possesses little protease activity, but it plays an inhibitory role in other active protease catalytic processes. The identification of human CLSPa as a novel Clr-like protein might facilitate future investigation of the regulatory mechanism of CLSPa in complement pathways during inflammation.  相似文献   

17.
The multi-domain serine protease C2 provides the catalytic activity for the C3 and C5- convertases of the classical and lectin pathways of complement activation. Formation of these convertases requires the Mg(2+)-dependent binding of C2 to C4b, and the subsequent cleavage of C2 by C1s or MASP2, respectively. The C-terminal fragment C2a consisting of a serine protease (SP) and a von Willebrand factor type A (vWFA) domain, remains attached to C4b, forming the C3 convertase, C4b2a. Here, we present the crystal structure of Mg(2+)-bound C2a to 1.9 A resolution in comparison to its homolog Bb, the catalytic subunit of the alternative pathway C3 convertase, C3bBb. Although the overall domain arrangement of C2a is similar to Bb, there are certain structural differences. Unexpectedly, the conformation of the metal ion-dependent adhesion site and the position of the alpha7 helix of the vWFA domain indicate a co-factor-bound or open conformation. The active site of the SP domain is in a zymogen-like inactive conformation. On the basis of these structural features, we suggest a model for the initial steps of C3 convertase assembly.  相似文献   

18.
The first enzymatic event in the classical pathway of complement activation is autoactivation of the C1r subcomponent of the C1 complex. Activated C1r then cleaves and activates zymogen C1s. C1r is a multidomain serine protease consisting of N-terminal alpha region interacting with other subcomponents and C-terminal gammaB region mediating proteolytic activity. The gammaB region consists of two complement control protein modules (CCP1, CCP2) and a serine protease domain (SP). To clarify the role of the individual domains in the structural and functional properties of the gammaB region we produced the CCP1-CCP2-SP (gammaB), the CCP2-SP, and the SP fragments in recombinant form in Escherichia coli. We successfully renatured the inclusion body proteins. After renaturation all three fragments were obtained in activated form and showed esterolytic activity on synthetic substrates similar to each other. To study the self-activation process in detail zymogen mutant forms of the three fragments were constructed and expressed. Our major statement is that the ability of autoactivation and C1s cleavage is an inherent property of the SP domain. We observed that the CCP2 module significantly increases proteolytic activity of the SP domain on natural substrate, C1s. Therefore, we propose that CCP2 module provides accessory binding sites. Differential scanning calorimetric measurements demonstrated that CCP2 domain greatly stabilizes the structure of SP domain. Deletion of CCP1 domain from the CCP1-CCP2-SP fragment results in the loss of the dimeric structure. Our experiments also provided evidence that dimerization of C1r is not a prerequisite for autoactivation.  相似文献   

19.
Complement factor B is a 90 kDa protein consisting of three domains: a three-module complement control protein, a von Willebrand factor A domain, and a C-terminal serine protease (SP) domain that adopts a default inactive (zymogen) conformation. The interaction between factor B and pathogen-bound C3b is mediated by its A domain, triggering a conformational change in factor B that ultimately creates the "C3 convertase" of the alternative complement pathway. We report the crystal structure of the A domain from factor B and show that it contains an integrin-like MIDAS motif that adopts the "open" conformation typical of integrin-ligand complexes, with an acidic residue (provided by a fortuitous crystal contact) completing the coordination of the metal ion. Modeling studies indicate that the factor B A domain can also adopt the closed conformation, supporting the hypothesis that an "integrin-like switch" is conserved in complement proteins and perhaps in 60 other A domains found within the human proteome.  相似文献   

20.
C1s is the highly specific modular serine protease that mediates the proteolytic activity of the C1 complex and thereby triggers activation of the complement cascade. The crystal structure of a catalytic fragment from human C1s comprising the second complement control protein (CCP2) module and the chymotrypsin-like serine protease (SP) domain has been determined and refined to 1.7 A resolution. In the areas surrounding the active site, the SP structure reveals a restricted access to subsidiary substrate binding sites that could be responsible for the narrow specificity of C1s. The ellipsoidal CCP2 module is oriented perpendicularly to the surface of the SP domain. This arrangement is maintained through a rigid module-domain interface involving intertwined proline- and tyrosine-rich polypeptide segments. The relative orientation of SP and CCP2 is consistent with the fact that the latter provides additional substrate recognition sites for the C4 substrate. This structure provides a first example of a CCP-SP assembly that is conserved in diverse extracellular proteins. Its implications in the activation mechanism of C1 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号