首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome aneuploidy is a major cause of pregnancy loss, abnormal pregnancy and live births following both natural conception and in vitro fertilisation (IVF) and increases exponentially with maternal age in the decade preceding the menopause. Molecular genetic analysis has shown that these are predominantly maternal in origin and trisomies most frequently occur through errors in the first meiotic division. Analysis of chromosome copy number in the three products of female meiosis, the first and second polar bodies and the corresponding zygote by microarray comparative genomic hybridisation (array CGH), in women of advanced maternal age undergoing IVF, has recently revealed a pattern of frequent multiple meiotic errors, caused by premature predivision of sister chromatids in meiosis I and a high incidence of errors in meiosis II. This pattern is similar to those observed in various mouse models which implicate the gradual depletion of cohesins, which are essential for cohesion of sister chromatids, as the primary cause of age related aneuploidy in female meiosis. However, defects in other aspects of meiosis including the formation and stabilisation of chiasmata and the spindle assembly checkpoint (SAC) may also contribute. The challenge remains to explain the molecular basis of ‘physiological’ rather than ‘chronological’ female ageing and the contribution of multifactorial causes from the fetal to adult ovary. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.  相似文献   

2.
Segregation of homologs at the first meiotic division (MI) is facilitated by crossovers and by a physical constraint imposed on sister kinetochores that facilitates monopolar attachment to the MI spindle. Recombination failure or premature separation of homologs results in univalent chromosomes at MI, and univalents constrained to form monopolar attachments should be inherently unstable and trigger the spindle assembly checkpoint (SAC). Although univalents trigger cell-cycle arrest in the male, this is not the case in mammalian oocytes. Because the spindle assembly portion of the SAC appears to function normally, two hypotheses have been proposed to explain the lack of response to univalents: (1) reduced stringency of the oocyte SAC to aberrant chromosome behavior, and (2) the ability of univalents to satisfy the SAC by forming bipolar attachments. The present study of Mlh1 mutant mice demonstrates that metaphase alignment is not a prerequisite for anaphase onset and provides strong evidence that MI spindle stabilization and anaphase onset require stable bipolar attachment of a critical mass--but not all--of chromosomes. We postulate that subtle differences in SAC-mediated control make the human oocyte inherently error prone and contribute to the age-related increase in aneuploidy.  相似文献   

3.
A hallmark of advanced maternal age is a significant increase in meiotic chromosome segregation errors, resulting in early miscarriages and congenital disorders. These errors most frequently occur during meiosis I (MI). The spindle assembly checkpoint (SAC) prevents chromosome segregation errors by arresting the cell cycle until proper chromosome alignment is achieved. Unlike in mitosis, the SAC in oocytes is desensitized, allowing chromosome segregation in the presence of improperly aligned chromosomes. Whether SAC integrity further deteriorates with advancing maternal age, and if this decline contributes to increased segregation errors remains a fundamental question. In somatic cells, activation of the SAC depends upon Aurora kinase B (AURKB), which functions to monitor kinetochore–microtubule attachments and recruit SAC regulator proteins. In mice, oocyte‐specific deletion of AURKB (Aurkb cKO) results in an increased production of aneuploid metaphase II‐arrested eggs and premature age‐related infertility. Here, we aimed to understand the cause of the short reproductive lifespan and hypothesized that SAC integrity was compromised. In comparing oocytes from young and sexually mature Aurkb cKO females, we found that SAC integrity becomes compromised rapidly with maternal age. We show that the increased desensitization of the SAC is driven by reduced expression of MAD2, ZW10 and Securin proteins, key contributors to the SAC response pathway. The reduced expression of these proteins is the result of altered protein homeostasis, likely caused by the accumulation of reactive oxygen species. Taken together, our results demonstrate a novel function for AURKB in preserving the female reproductive lifespan possibly by protecting oocytes from oxidative stress.  相似文献   

4.
A model system for increased meiotic nondisjunction in older oocytes   总被引:2,自引:0,他引:2  
For at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency with maternal age. Despite the clinical importance of age-dependent nondisjunction in humans, the underlying mechanisms remain largely unexplained. Efforts to recapitulate age-dependent nondisjunction in a mammalian experimental system have so far been unsuccessful. Here we provide evidence that Drosophila is an excellent model organism for investigating how oocyte aging contributes to meiotic nondisjunction. As in human oocytes, nonexchange homologs and bivalents with a single distal crossover in Drosophila oocytes are most susceptible to spontaneous nondisjunction during meiosis I. We show that in a sensitized genetic background in which sister chromatid cohesion is compromised, nonrecombinant X chromosomes become vulnerable to meiotic nondisjunction as Drosophila oocytes age. Our data indicate that the backup pathway that normally ensures proper segregation of achiasmate chromosomes deteriorates as Drosophila oocytes age and provide an intriguing paradigm for certain classes of age-dependent meiotic nondisjunction in humans.  相似文献   

5.
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.  相似文献   

6.
The Spindle Assembly Checkpoint (SAC) inhibits anaphase until microtubule-to-kinetochore attachments are formed, thus securing correct chromosome separation and preventing aneuploidy. Whereas in mitosis even a single unattached chromosome keeps the SAC active, the high incidence of aneuploidy related to maternal meiotic errors raises a concern about the lower efficiency of SAC in oocytes. Recently it was suggested that in mouse oocytes, contrary to somatic cells, not a single chromosome but a critical mass of chromosomes triggers efficient SAC pointing to the necessity of evaluating the robustness of SAC in oocytes. Two types of errors in chromosome segregation upon meiosis I related to SAC were envisaged: (1) SAC escape, when kinetochores emit SAC-activating signal unable to stop anaphase I; and (2) SAC deceive, when kinetochores do not emit the signal. Using micromanipulations and live imaging of the first polar body extrusion, as well as the dynamics of cyclin B1 degradation, here we show that in mouse oocytes a single bivalent keeps the SAC active. This is the first direct evaluation of SAC efficiency in mouse oocytes, which provides strong evidence that the robustness of SAC in mammalian oocytes is comparable to other cell types. Our data do not contradict the hypothesis of the critical mass of chromosomes necessary for SAC activation, but suggest that the same rule may govern SAC activity also in other cell types. We postulate that the innate susceptibility of oocytes to errors in chromosome segregation during the first meiotic division may not be caused by lower efficiency of SAC itself, but could be linked to high critical chromosome mass necessary to keep SAC active in oocyte of large size.  相似文献   

7.
We have studied the mechanism of origin of 63 cases of trisomy 18. In 2 the additional chromosome was paternal in origin, and in the remaining 61 it was maternal in origin. Both paternal cases were attributable to a postzygotic mitotic (PZM) error. Among the 54 maternal cases for which the cell division of error was established, only 16 were attributable to an error at the first meiotic division (mat MI), whereas no fewer than 35 were due to an error at the second meiotic division (mat MII), the remaining 3 being the result of a PZM error involving the maternal chromosome 18. A standard map of chromosome 18 was constructed and compared with the nondisjunctional map. Approximately one-third of the mat MI errors were associated with complete absence of recombination, whereas in the remaining two-thirds and in all the mat MII errors recombination in the nondisjoined chromosomes appeared to be normal. All the maternal errors were associated with an increased maternal age, although this reached significance only for the mat MII category of nondisjunction. Our observations on chromosome 18 are compared with those on other chromosomes for which there are comparable data.  相似文献   

8.
The spindle assembly checkpoint (SAC) monitors attachment to microtubules and tension on chromosomes in mitosis and meiosis. It represents a surveillance mechanism that halts cells in M-phase in the presence of unattached chromosomes, associated with accumulation of checkpoint components, in particular, Mad2, at the kinetochores. A complex between the anaphase promoting factor/cylosome (APC/C), its accessory protein Cdc20 and proteins of the SAC renders APC/C inactive, usually until all chromosomes are properly assembled at the spindle equator (chromosome congression) and under tension from spindle fibres. Upon release from the SAC the APC/C can target proteins like cyclin B and securin for degradation by the proteasome. Securin degradation causes activation of separase proteolytic enzyme, and in mitosis cleavage of cohesin proteins at the centromeres and arms of sister chromatids. In meiosis I only the cohesin proteins at the sister chromatid arms are cleaved. This requires meiosis specific components and tight regulation by kinase and phosphatase activities. There is no S-phase between meiotic divisions. Second meiosis resembles mitosis. Mammalian oocytes arrest constitutively at metaphase II in presence of aligned chromosomes, which is due to the activity of the cytostatic factor (CSF). The SAC has been identified in spermatogenesis and oogenesis, but gender-differences may contribute to sex-specific differential responses to aneugens. The age-related reduction in expression of components of the SAC in mammalian oocytes may act synergistically with spindle and other cell organelles' dysfunction, and a partial loss of cohesion between sister chromatids to predispose oocytes to errors in chromosome segregation. This might affect dose-response to aneugens. In view of the tendency to have children at advanced maternal ages it appears relevant to pursue studies on consequences of ageing on the susceptibility of human oocytes to the induction of meiotic error by aneugens and establish models to assess risks to human health by environmental exposures.  相似文献   

9.
We have previously examined characteristics of maternal chromosomes 21 that exhibited a single recombination on 21q and proposed that certain recombination configurations are risk factors for either meiosis I (MI) or meiosis II (MII) nondisjunction. The primary goal of this analysis was to examine characteristics of maternal chromosomes 21 that exhibited multiple recombinant events on 21q to determine whether additional risk factors or mechanisms are suggested. In order to identify the origin (maternal or paternal) and stage (MI or MII) of the meiotic errors, as well as placement of recombination, we genotyped over 1,500 SNPs on 21q. Our analyses included 785 maternal MI errors, 87 of which exhibited two recombinations on 21q, and 283 maternal MII errors, 81 of which exhibited two recombinations on 21q. Among MI cases, the average location of the distal recombination was proximal to that of normally segregating chromosomes 21 (35.28 vs. 38.86 Mb), a different pattern than that seen for single events and one that suggests an association with genomic features. For MII errors, the most proximal recombination was closer to the centromere than that on normally segregating chromosomes 21 and this proximity was associated with increasing maternal age. This pattern is same as that seen among MII errors that exhibit only one recombination. These findings are important as they help us better understand mechanisms that may underlie both age-related and nonage-related meiotic chromosome mal-segregation.  相似文献   

10.
In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age-dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 is reduced. Our finding that missegregation of recombinant homologues increases with age supports the model that chiasmata are destabilized by gradual loss of cohesion over time. Moreover, the stage at which Drosophila oocytes are most vulnerable to age-related defects is analogous to that at which human oocytes remain arrested for decades. Our data provide the first demonstration in any organism that, when meiotic cohesion begins intact, the aging process can weaken it sufficiently and cause missegregation of recombinant chromosomes. One major advantage of these studies is that we have reduced but not eliminated the SMC1 subunit. Therefore, we have been able to investigate how aging affects normal meiotic cohesion. Our findings that recombinant chromosomes are at highest risk for loss of chiasmata during diplotene argue that human oocytes are most vulnerable to age-induced loss of meiotic cohesion at the stage at which they remain arrested for several years.  相似文献   

11.
Loss or gain of chromosomes, a condition known as aneuploidy, is a common feature of tumor cells and has therefore been proposed as the driving force for tumorigenesis. Such chromosomal instability can arise during mitosis as a result of mis-segregation of the duplicated sister chromatids to the two daughter cells. In normal cells, missegregation is usually prevented by the spindle assembly checkpoint (SAC), a sophisticated surveillance mechanism that inhibits mitotic exit until all chromosomes have successfully achieved bipolar attachment to spindle microtubules. Complete abrogation of SAC activity is lethal to normal as well as to tumor cells, as a consequence of massive chromosome mis-segregation. Importantly, many human aneuploid tumor cells exhibit a weakened SAC activity that allows them to tolerate gains or losses of a small number of chromosomes; and interfering with this SAC residual activity may constitute a suitable strategy to kill cancer cells. This review focuses on the potential link between SAC and tumorigenesis, and the therapeutic strategy to target the SAC for cancer treatment.  相似文献   

12.
Aneuploidy in fetal chromosomes is one of the causes of pregnancy loss and of congenital birth defects. It is known that the frequency of oocyte aneuploidy increases with the human maternal age. Recent data have highlighted the contribution of cohesin complexes in the correct segregation of meiotic chromosomes. In mammalian oocytes, cohesion is established during the fetal stages and meiosis-specific cohesin subunits are not replenished after birth, raising the possibility that the long meiotic arrest of oocytes facilitates a deterioration of cohesion that leads to age-related increases in aneuploidy. We here examined the cohesin levels in dictyate oocytes from different age groups of humans and mice by immunofluorescence analyses of ovarian sections. The meiosis-specific cohesin subunits, REC8 and SMC1B, were found to be decreased in women aged 40 and over compared with those aged around 20 years (P<0.01). Age-related decreases in meiotic cohesins were also evident in mice. Interestingly, SMC1A, the mitotic counterpart of SMC1B, was substantially detectable in human oocytes, but little expressed in mice. Further, the amount of mitotic cohesins of mice slightly increased with age. These results suggest that, mitotic and meiotic cohesins may operate in a coordinated way to maintain cohesions over a sustained period in humans and that age-related decreases in meiotic cohesin subunits impair sister chromatid cohesion leading to increased segregation errors.  相似文献   

13.
Unlike somatic cells mitosis, germ cell meiosis consists of 2 consecutive rounds of division that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric division. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it is localized to meiotic spindles and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration, large polar body emission, and 2-cell like oocytes. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.  相似文献   

14.
Factors of both cytoplasmic and nuclear origin regulate metaphase chromosome alignment and spindle checkpoint during mitosis. Most aneuploidies associated with maternal aging are believed to derive from nondisjunction and meiotic errors, such as aberrations in spindle formation and chromosome alignment at meiosis I. Senescence-accelerated mice (SAM) exhibit aging-associated meiotic defects, specifically chromosome misalignments at meiosis I and II that resemble those found in human female aging. How maternal aging disrupts meiosis remains largely unexplained. Using germinal vesicle nuclear transfer, we found that aging-associated misalignment of metaphase chromosomes is predominately associated with the nuclear factors in the SAM model. Cytoplasm of young hybrid B6C3F1 mouse oocytes could partly rescue aging-associated meiotic chromosome misalignment, whereas cytoplasm of young SAM was ineffective in preventing the meiotic defects of old SAM oocytes, which is indicative of a deficiency of SAM oocyte cytoplasm. Our results demonstrate that both nuclear and cytoplasmic factors contribute to the meiotic defects of the old SAM oocytes and that the nuclear compartment plays the predominant role in the etiology of aging-related meiotic defects.  相似文献   

15.
The effects of maternal aging on the configuration of chiasmata, formation of univalents, and segregation of first meiotic (MI) chromosomes were investigated in young (5-8 mo) and old (16-19 mo) Chinese hamsters. Primary oocytes were collected only from mature follicles approximately 10 h before ovulation, and secondary oocytes were obtained from the oviducts 5 h after spontaneous ovulation. The average number of chiasmata per oocyte was significantly smaller in aged hamsters than in the young hamsters (P less than 0.001). Terminal chiasmata were found more frequently in the former group than in the latter one (P less than 0.001). These results coincided well with findings in the mouse. Since the 11 meiotic chromosomes could be divided into four morphologically distinguishable subgroups, it was possible to determine whether the same bivalent forming univalents at MI actually underwent nondisjunction in the following meiotic division. The incidence of both MI oocytes with a univalent pair and aneuploid MII oocytes due to first meiotic nondisjunction was significantly higher in the aged group than in the young group (P less than 0.01) and P less than 0.05, respectively). However, univalents occurred almost exclusively in the smallest metacentric chromosome group (96%), whereas nondisjunction took place nearly equally in each chromosomal subgroup. These results clearly showed that there was no correlation between the univalents seen at MI and nondisjunction during the first meiotic division.  相似文献   

16.
17.
Chromosome segregation errors are highly frequent in mammalian female meiosis, and their incidence gradually increases with maternal age. The fate of aneuploid eggs is obviously dependent on the stringency of mechanisms for detecting unattached or repairing incorrectly attached kinetochores. In case of their failure, the newly formed embryo will inherit the impaired set of chromosomes, which will have severe consequences for its further development. Whether spindle assembly checkpoint (SAC) in oocytes is capable of arresting cell cycle progression in response to unaligned kinetochores was discussed for a long time. It is known that abolishing SAC increases frequency of chromosome segregation errors and causes precocious entry into anaphase; SAC, therefore, seems to be essential for normal chromosome segregation in meiosis I. However, it was also reported that for anaphase-promoting complex (APC) activation, which is a prerequisite for entering anaphase; alignment of only a critical mass of kinetochores on equatorial plane is sufficient. This indicates that the function of SAC and of cooperating chromosome attachment correction mechanisms in oocytes is different from somatic cells. To analyze this phenomenon, we used live cell confocal microscopy to monitor chromosome movements, spindle formation, APC activation and polar body extrusion (PBE) simultaneously in individual oocytes at various time points during first meiotic division. Our results, using oocytes from aged animals and interspecific crosses, demonstrate that multiple unaligned kinetochores and severe congression defects are tolerated at the metaphase to anaphase transition, although such cells retain sensitivity to nocodazole. This indicates that checkpoint mechanisms, operating in oocytes at this point, are essential for accurate timing of APC activation in meiosis I, but they are insufficient in detection or correction of unaligned chromosomes, preparing thus conditions for propagation of the aneuploidy to the embryo.  相似文献   

18.
Chromosome segregation errors are highly frequent in mammalian female meiosis, and their incidence gradually increases with maternal age. The fate of aneuploid eggs is obviously dependent on the stringency of mechanisms for detecting unattached or repairing incorrectly attached kinetochores. In case of their failure, the newly formed embryo will inherit the impaired set of chromosomes, which will have severe consequences for its further development. Whether spindle assembly checkpoint (SAC) in oocytes is capable of arresting cell cycle progression in response to unaligned kinetochores was discussed for a long time. It is known that abolishing SAC increases frequency of chromosome segregation errors and causes precocious entry into anaphase; SAC, therefore, seems to be essential for normal chromosome segregation in meiosis I. However, it was also reported that for anaphase-promoting complex (APC) activation, which is a prerequisite for entering anaphase; alignment of only a critical mass of kinetochores on equatorial plane is sufficient. This indicates that the function of SAC and of cooperating chromosome attachment correction mechanisms in oocytes is different from somatic cells. To analyze this phenomenon, we used live cell confocal microscopy to monitor chromosome movements, spindle formation, APC activation and polar body extrusion (PBE) simultaneously in individual oocytes at various time points during first meiotic division. Our results, using oocytes from aged animals and interspecific crosses, demonstrate that multiple unaligned kinetochores and severe congression defects are tolerated at the metaphase to anaphase transition, although such cells retain sensitivity to nocodazole. This indicates that checkpoint mechanisms, operating in oocytes at this point, are essential for accurate timing of APC activation in meiosis I, but they are insufficient in detection or correction of unaligned chromosomes, preparing thus conditions for propagation of the aneuploidy to the embryo.  相似文献   

19.
Smc1β is a meiosis-specific cohesin subunit that is essential for sister chromatid cohesion and DNA recombination. Previous studies have shown that Smc1β-deficient mice in both sexes are sterile. Ablation of Smc1β during male meiosis leads to the blockage of spermatogenesis in pachytene stage, and ablation of Smc1β during female meiosis generates a highly error-prone oocyte although it could develop to metaphase II stage. However, the underlying mechanisms regarding how Smc1β maintains the correct meiotic progression in mouse oocytes have not been clearly defined. Here, we find that GFP-fused Smc1β is expressed and localized to the chromosomes from GV to MII stages during mouse oocyte meiotic maturation. Knockdown of Smc1β by microinjection of gene-specific morpholino causes the impaired spindle apparatus and chromosome alignment which are highly correlated with the defective kinetochore-microtubule attachments, consequently resulting in a prominently higher incidence of aneuploid eggs. In addition, the premature extrusion of polar bodies and escape of metaphase I arrest induced by low dose of nocodazole treatment in Smc1β-depleted oocytes indicates that Smc1β is essential for activation of spindle assembly checkpoint (SAC) activity. Collectively, we identify a novel function of Smc1β as a SAC participant beyond its role in chromosome cohesion during mouse oocyte meiosis.  相似文献   

20.
Jing Chen  Jian Liu 《Biophysical journal》2015,109(11):2418-2435
To segregate chromosomes during cell division, microtubules that form the bipolar spindle attach to and pull on paired chromosome kinetochores. The spindle assembly checkpoint (SAC) is activated at unattached and misattached kinetochores to prevent further mitotic progression. The SAC is silenced after all the kinetochores establish proper and stable attachment to the spindle. Robust timing of SAC silencing after the last kinetochore-spindle attachment herein dictates the fidelity of chromosome segregation. Chromosome missegregation is rare in typical somatic cell mitosis, but frequent in cancer cell mitosis and in meiosis I of mammalian oocytes. In the latter cases, SAC is normally activated in response to disruptions of kinetochore-spindle attachments, suggesting that frequent chromosome missegregation ensues from faulty SAC silencing. In-depth understanding of how SAC silencing malfunctions in these cases is yet missing, but is believed to hold promise for treatment of cancer and prevention of human miscarriage and birth defects. We previously established a spatiotemporal model that, to the best of our knowledge, explained the robustness of SAC silencing in normal mitosis for the first time. In this article, we take advantage of the whole-cell perspective of the spatiotemporal model to identify possible causes of chromosome missegregation out of the distinct features of spindle assembly exhibited by cancer cells and mammalian oocytes. The model results explain why multipolar spindle could inhibit SAC silencing and spindle pole clustering could promote it—albeit accompanied by more kinetochore attachment errors. The model also eliminates geometric factors as the cause for nonrobust SAC silencing in oocyte meiosis, and instead, suggests atypical kinetochore-spindle attachment in meiosis as a potential culprit. Overall, the model shows that abnormal spindle-pole formation and its aberrant coordination with atypical kinetochore-spindle attachments could compromise the robustness of SAC silencing. Our model highlights systems-level coupling between kinetochore-spindle attachment and spindle-pole formation in SAC silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号