首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial constituents in the cytosol rather than at the cell surface along with cytosolic recognition of secreted bacterial nucleic acids indicates viability and virulence of infecting bacteria. The effector responses triggered by activation of cytosolic PRRs, in particular the RIG-I-induced simultaneous rapid type I IFN induction and inflammasome activation, are crucial for timely control of bacterial infection by innate and adaptive immunity. The knowledge on the PRRs and the effector responses relevant for control of infection with intracellular bacteria will help to develop strategies to overcome chronic infection.  相似文献   

2.
3.
Brain abscesses arise following parenchymal infection with pyogenic bacteria and are typified by inflammation and edema, which frequently results in a multitude of long-term health problems. The impact of adaptive immunity in shaping continued innate responses during late-stage brain abscess formation is not known but is important, because robust innate immunity is required for effective bacterial clearance. To address this issue, brain abscesses were induced in TCR αβ knockout (KO) mice, because CD4(+) and NKT cells represented the most numerous T cell infiltrates. TCR αβ KO mice exhibited impaired bacterial clearance during later stages of infection, which was associated with alterations in neutrophil and macrophage recruitment, as well as perturbations in cytokine/chemokine expression. Adoptive transfer of either Th1 or Th17 cells into TCR αβ KO mice restored bacterial burdens and innate immune cell infiltrates to levels detected in wild-type animals. Interestingly, adoptively transferred Th17 cells demonstrated plasticity within the CNS compartment and induced distinct cytokine secretion profiles in abscess-associated microglia and macrophages compared with Th1 transfer. Collectively, these studies identified an amplification loop for Th1 and Th17 cells in shaping established innate responses during CNS infection to maximize bacterial clearance and differentially regulate microglial and macrophage secretory profiles.  相似文献   

4.
Human extracellular superoxide dismutase (EC-SOD) is involved in the defence against oxidative stress induced by the superoxide radical. The protein is a homotetramer stabilised by hydrophobic interactions within the N-terminal region. During the purification of EC-SOD from human aorta, we noticed that material with high affinity for heparin-Sepharose formed not only a tetramer but also an octamer. Analysis of the thermodynamic stability of the octamer suggested that the C-terminal region is involved in formation of the quaternary structure. In addition, we show that the octamer is composed of both aEC-SOD and iEC-SOD folding variants. The presence of the EC-SOD octamer with high affinity may represent a way to influence the local concentration of EC-SOD to protect tissues specifically sensitive to oxidative damage.  相似文献   

5.
Extracellular superoxide dismutase (EC-SOD) is expressed at high levels in lungs. EC-SOD has a polycationic matrix-binding domain that binds to polyanionic constituents in the matrix. Previous studies indicate that EC-SOD protects the lung in both bleomycin- and asbestos-induced models of pulmonary fibrosis. Although the mechanism of EC-SOD protection is not fully understood, these studies indicate that EC-SOD plays an important role in regulating inflammatory responses to pulmonary injury. Hyaluronan is a polyanionic high molecular mass polysaccharide found in the extracellular matrix that is sensitive to oxidant-mediated fragmentation. Recent studies found that elevated levels of low molecular mass hyaluronan are associated with inflammatory conditions. We hypothesize that EC-SOD may inhibit pulmonary inflammation in part by preventing superoxide-mediated fragmentation of hyaluronan to low molecular mass fragments. We found that EC-SOD directly binds to hyaluronan and significantly inhibits oxidant-induced degradation of this glycosaminoglycan. In vitro human polymorphic neutrophil chemotaxis studies indicate that oxidative fragmentation of hyaluronan results in polymorphic neutrophil chemotaxis and that EC-SOD can completely prevent this response. Intratracheal injection of crocidolite asbestos in mice leads to pulmonary inflammation and injury that is enhanced in EC-SOD knock-out mice. Notably, hyaluronan levels are increased in the bronchoalveolar lavage fluid after asbestos-induced pulmonary injury, and this response is markedly enhanced in EC-SOD knock-out mice. These data indicate that inhibition of oxidative hyaluronan fragmentation probably represents one mechanism by which EC-SOD inhibits inflammation in response to lung injury.  相似文献   

6.
7.
Extracellular superoxide dismutase in biology and medicine   总被引:24,自引:0,他引:24  
Accumulated evidence has shown that reactive oxygen species (ROS) are important mediators of cell signaling events such as inflammatory reactions (superoxide) and the maintenance of vascular tone (nitric oxide). However, overproduction of ROS such as superoxide has been associated with the pathogenesis of a variety of diseases including cardiovascular diseases, neurological disorders, and pulmonary diseases. Antioxidant enzymes are, in part, responsible for maintaining low levels of these oxygen metabolites in tissues and may play key roles in controlling or preventing these conditions. One key antioxidant enzyme implicated in the regulation of ROS-mediated tissue damage is extracellular superoxide dismutase (EC-SOD). EC-SOD is found in the extracellular matrix of tissues and is ideally situated to prevent cell and tissue damage initiated by extracellularly produced ROS. In addition, EC-SOD is likely to play an important role in mediating nitric oxide-induced signaling events, since the reaction of superoxide and nitric oxide can interfere with nitric oxide signaling. This review will discuss the regulation of EC-SOD and its role in a variety of oxidant-mediated diseases.  相似文献   

8.
9.
The contents of extracellular superoxide dismutase, CuZn superoxide dismutase and Mn superoxide dismutase were determined in tissues from nine mammalian species. The pattern of CuZn superoxide dismutase distribution was similar in all species, with high activity in metabolically active organs such as liver and kidney and low activity in, for example, skeletal muscle. Mn superoxide dismutase activity was high in organs with high respiration, such as liver, kidney, and myocardium. Overall the Mn superoxide dismutase activity in organs was almost as high as the CuZn superoxide dismutase activity. The content of extracellular superoxide dismutase was, almost without exception, lower than the content of the other isoenzymes. The pattern of tissue distribution was distinctly different from those of CuZn superoxide dismutase and Mn superoxide dismutase. The tissue distribution of extracellular superoxide dismutase differed among species, but in general there was much in lungs and kidneys and little in skeletal muscle. In man, pig, sheep, cow, rabbit and mouse the overall tissue extracellular superoxide dismutase activities were similar to each other, whereas dog, cat and rat tissues contained distinctly less. There was no general correlation between the tissue extracellular superoxide dismutase activity of any of the various species and the variable plasma activity. The ratio between the plasma and the overall tissue activities was high, for some species over unity, providing further evidence for the notion that one role of extracellular superoxide dismutase is as a plasma protein.  相似文献   

10.
The immune response against viral infection relies on the early production of cytokines that induce an antiviral state and trigger the activation of immune cells. This response is initiated by the recognition of virus-associated molecular patterns such as dsRNA, a viral replication intermediate recognized by TLR3 and certain RNA helicases. Infection with West Nile virus (WNV) can lead to lethal encephalitis in susceptible individuals and constitutes an emerging health threat. In this study, we report that WNV envelope protein (WNV-E) specifically blocks the production of antiviral and proinflammatory cytokines induced by dsRNA in murine macrophages. This immunosuppressive effect was not dependent on TLR3 or its adaptor molecule Trif. Instead, our experiments show that WNV-E acts at the level of receptor-interacting protein 1. Our results also indicate that WNV-E requires a certain glycosylation pattern, specifically that of dipteran cells, to inhibit dsRNA-induced cytokine production. In conclusion, these data show that the major structural protein of WNV impairs the innate immune response and suggest that WNV exploits differential vector/host E glycosylation profiles to evade antiviral mechanisms.  相似文献   

11.
Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1β and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1β and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.  相似文献   

12.
Clinical studies over the past several years have reported that metastasis-free survival times in humans and dogs with osteosarcoma are significantly increased in patients that develop chronic bacterial osteomyelitis at their surgical site. However, the immunological mechanism by which osteomyelitis may suppress tumor growth has not been investigated. Therefore, we used a mouse model of osteomyelitis to assess the effects of bone infection on innate immunity and tumor growth. A chronic Staphylococcal osteomyelitis model was established in C3H mice and the effects of infection on tumor growth of syngeneic DLM8 osteosarcoma were assessed. The effects of infection on tumor angiogenesis and innate immunity, including NK cell and monocyte responses, were assessed. We found that osteomyelitis significantly inhibited the growth of tumors in mice, and that the effect was independent of the infecting bacterial type, tumor type, or mouse strain. Depletion of NK cells or monocytes reversed the antitumor activity elicited by infection. Moreover, infected mice had a significant increase in circulating monocytes and numbers of tumor associated macrophages. Infection suppressed tumor angiogenesis but did not affect the numbers of circulating endothelial cells. Therefore, we concluded that chronic localized bacterial infection could elicit significant systemic antitumor activity dependent on NK cells and macrophages.  相似文献   

13.
The role of intracellular oxyradicals in H2O2 and neutrophil-induced cytotoxicity is suggested by previous studies showing protection by inhibitors such as deferroxamine, dimethylthiourea, and dimethyl sulfoxide. In the current studies, the role of intracellular O2- is specifically examined by evaluating the effects of intracellular superoxide dismutase (SOD) supplementation on cytotoxicity of rat pulmonary artery endothelial cells induced by H2O2 and activated neutrophils. To minimize in vitro manipulation, supplementation was accomplished by incubating endothelial cells in the presence of SOD (1-20 mg/mL). Increases up to greater than 17-fold the baseline SOD activity were achievable using this approach, with uptake being maximal after 6 h of incubation. This increase was resistant to trypsin digestion, suggesting the intracellular location of SOD. Compared to controls, SOD-supplemented cells showed significantly increased resistance to killing by H2O2 and activated neutrophils. Inactive SOD failed to provide protection. The degree of protection was dependent on the dose of cytotoxic agent and the extent of SOD supplementation. The results provide new evidence that intracellular O2- participates in the killing process induced by these two stimuli. The intracellular source of O2- remains to be determined, although previous studies suggest xanthine oxidase as a likely candidate.  相似文献   

14.
To cause disease, bacterial pathogens must first breach physical barriers, such as the mucous membrane that lines organs, and then successfully replicate and disseminate while avoiding destruction by the immune system. Many bacterial pathogens accomplish this by secreting proteins into their host environment, which act to subvert or dampen the expanding immune response. Here, we discuss how bacterial pathogens use an arsenal of secreted virulence proteins to modify the outcome of innate immune activation by altering how the immune system recognizes microbial invaders.  相似文献   

15.
The NOD1/2‐RIPK2 is a key cytosolic signaling complex that activates NF‐κB pro‐inflammatory response against invading pathogens. However, uncontrolled NF‐κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs‐RIPK2‐NF‐κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self‐assembling entities that coat the bacteria to induce NF‐κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF‐κB activation. IRGM suppresses RIPK2‐dependent pro‐inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection‐ and DSS‐induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.  相似文献   

16.
Extracellular superoxide dismutase (EC SOD) is generally the least abundant SOD isozyme in tissues, while the intracellular Cu,Zn SOD is usually the most abundant isozyme. The biological significance of EC SOD is unknown. Immunolocalization studies show that EC SOD is in the connective tissue surrounding smooth muscle in vessels and airways within the lung. Endothelium derived relaxing factor, thought to be a nitric oxide (NO·) species, is a primary mediator of vascular relaxation. During NO·′ diffusion between the endothelium and smooth muscle, extracellular superoxide would be the most efficient scavenger of NO·. High levels of extracellualar superoxide dismutase in vessels could, therefore, be essential to enable NO' to modulate vascular tone. To evaluate the hypothesis that vessel walls are functionally rich in extracellular superoxide scavenging capacity, this study quantitates the EC SOD levels in pulmonary and systemic vessels and in airways. Both pulmonary and systemic arteries in humans and baboons were found to contain high activities of EC SOD. The level of EC SOD in all human and baboon arteries examined is greater than or equal to the level of intracellular Cu,Zn SOD, and EC SOD accounted for over 70% of the total SOD activity in some vessels examined. Immunolocalization of EC SOD in human and baboon vessels show similar distributions of this enzyme in pulmonary and systemic vessels. EC SOD is located beneath the endothelium, surrounding smooth muscle cells, and throughout the adventitia of vessels. The high level of EC SOD in vessels, and its localization between endothelial and smooth muscle cells, suggest that regulation of superoxide may be particularly important in this region, possibly in regulating vascular tone.  相似文献   

17.
We found that absence of osteopontin (OPN) in immunocompromised Rag2(-/-) mice, which lack T and B cells, made the mice extremely susceptible to an opportunistic fungus Pneumocystis, although immunocompetent OPN-deficient mice could clear Pneumocystis as well as wild-type mice. OPN has been studied as an extracellular protein, and the role of an intracellular isoform of OPN (iOPN) is still largely unknown. In this study, we elucidated the mechanism by which iOPN was involved in antifungal innate immunity. First, iOPN was essential for cluster formation of fungal receptors that detect Pneumocystis, including dectin-1, TLR2, and mannose receptor. Second, iOPN played a role as an adaptor molecule in TLR2 and dectin-1 signaling pathways and mediated ERK activation and cytokine production by zymosan, which simultaneously activates TLR2 and dectin-1 pathways. Third, iOPN enhanced phagocytosis and clearance of Pneumocystis. Our study suggests the critical involvement of iOPN in antifungal innate immunity.  相似文献   

18.
Extracellular superoxide dismutase in the vascular system of mammals.   总被引:11,自引:3,他引:8       下载免费PDF全文
NIH 3T3 cells, which express a small number of EGF (epidermal growth factor) receptors, are poorly responsive to EGF. However, when the same cells overexpress the cloned human EGF receptor (EGFR T17 cells), they display EGF-dependent transformation. In EGFR T17 cells (but not in the parental NIH 3T3 cells), EGF is shown here to trigger polyphosphoinositide hydrolysis as well as the generation of the ensuing intracellular signals, the increase in the cytosolic Ca2+ concentration ([Ca2+]i) and pH. EGF induced a large accumulation of inositol 1,4,5-trisphosphate, with a peak at 15-30 s and a slow decline thereafter. Other inositol phosphates (1,3,4-trisphosphate and 1,3,4,5-tetrakisphosphate) increased less rapidly and to a lesser degree. [Ca2+]i increased after a short lag, reached a peak at 25 s and remained elevated for several minutes. By use of incubation media with and without Ca2+, the initial phase of the EGF-induced [Ca2+]i increase was shown to be due largely to Ca2+ release from intracellular stores. In contrast with previous observations in human A431 cells, the concentration-dependence of the EGF-triggered [Ca2+]i increase in EGFR T17 cells paralleled that of [3H]thymidine incorporation. It is concluded that polyphosphoinositide hydrolysis, [Ca2+]i increase and cytoplasmic alkalinization are part of the spectrum of intracellular signals generated by the activation of one single EGF receptor type. These processes might be triggered by the receptor via activation of the intrinsic tyrosine kinase activity. Large stimulation of DNA synthesis and proliferation by EGF in EGFR T17 cells could be due to a synergistic interplay between the two signal pathways initiated by tyrosine phosphorylation and polyphosphoinositide hydrolysis.  相似文献   

19.
20.
5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号