首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-methyl-D-aspartate receptors (NMDARs) play critical roles in excitatory synaptic transmission in the vertebrate central nervous system. NMDARs need D-serine for their channel activities in various brain regions. In mammalian brains, D-serine is produced from L-serine by serine racemase and degraded by D-amino acid oxidase (DAO) to 3-hydroxypyruvate. In avian organs, such as the kidney, in addition to DAO, D-serine is also degraded to pyruvate by D-serine dehydratase (DSD). To examine the roles of these two enzymes in avian brains, we developed a method to simultaneously measure DAO and DSD activities. First, the keto acids produced from D-serine were derivatized with 3-methyl-2-benzothiazolinone hydrazone to stable azines. Second, the azine derivatives were quantified by means of reverse-phase high-performance liquid chromatography using 2-oxoglutarate as an internal standard. This method allowed the simultaneous detection of DAO and DSD activities as low as 100 pmol/min/mg protein. Chicken brain showed only DSD activities (0.4+/-0.2 nmol/min/mg protein) whereas rat brain exhibited only DAO activities (0.7+/-0.1 nmol/min/mg protein). This result strongly suggests that DSD plays the same role in avian brains, as DAO plays in mammalian brains. The present method is applicable to other keto acids producing enzymes with minor modifications.  相似文献   

2.
d-Aspartate oxidase (DDO) and d-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of d-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure–function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure–function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO.  相似文献   

3.
4.
D-amino acid oxidase (DAO) is a flavoenzyme that catalyzes the oxidation of D-amino acids. In the brain, gene expression of DAO is detected in astrocytes. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) receptor. In a search for the physiological role of DAO in the brain, we investigated the metabolism of extracellular D-serine in glial cells. Here we show that after D-serine treatment, rat primary type-1 astrocytes exhibited increased cell death. In order to enhance the enzyme activity of DAO in cells, we established stable rat C6 glial cells overexpressing mouse DAO designated as C6/DAO. Treatment with a high dose of D-serine led to the production of hydrogen peroxide (H(2)O(2)) followed by apoptosis in C6/DAO cells. Among the amino acids tested, D-serine specifically exhibited a significant cell death-inducing effect. DAO inhibitors, i.e., sodium benzoate and chlorpromazine, partially prevented the death of C6/DAO cells treated with D-serine, indicating the involvement of DAO activity in d-serine metabolism. Overall, we consider that extracellular D-serine can gain access to intracellular DAO, being metabolized to produce H(2)O(2). These results support the proposal that astroglial DAO plays an important role in metabolizing a neuromodulator, D-serine.  相似文献   

5.
D-amino acid oxidase (DAO) is of considerable practical importance, such as bioconversion and enzymatic assay. In this study, we succeeded in obtaining a thermostable mutant DAO from porcine kidney by a single amino acid substitution. This mutant enzyme, F42C, was stable at 55 degrees C, while the wild-type enzyme was stable only up to 45 degrees C. The Km values of F42C for D-amino acids was about half of those of the wild-type enzyme. This mutant DAO with improved stability and affinity for its substrates is advantageous for the determination of D-amino acids.  相似文献   

6.
The physiological role of D-amino acid oxidase was investigated by using mutant ddY/DAO- mice lacking the enzyme. Free D-amino acid concentrations in the mutant mice were significantly higher than those of control ddY/DAO+ mice in kidney, liver, lung, heart, brain, erythrocytes, serum and urine. The results suggest that the enzyme is involved in the catabolism of free D-amino acids in the body, and that free D-amino acids are also excreted into urine.  相似文献   

7.
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic d-amino acids (i.e., free d-aspartate and d-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than d-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade d-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward d-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded d-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic d-amino acids in biological samples.  相似文献   

8.
D-Amino acids play a key role in regulation of many processes in living cells. FAD-dependent D-amino acid oxidase (DAAO) is one of the most important enzymes responsible for maintenance proper level of D-amino acids. The most interesting and important data for regulation of the nervous system, hormone secretion, and other processes by D-amino acids as well as development of different diseases under changed DAAO activity are presented. The mechanism of regulation is complex and multi-parametric because the same enzyme simultaneously influences the level of different D-amino acids, which can result in opposing effects. Use of DAAO for diagnostic and therapeutic purposes is also considered.  相似文献   

9.
10.
It was long believed that D-amino acids were either unnatural isomers or laboratorial artifacts and that the important functions of amino acids were exerted only by l-amino acids. However, recent investigations have shown that a variety of D-amino acids are present in mammals and that they play important roles in physiological functions in the body. Among the free d-amino acids that have been identified in mammals, D-aspartate (D-Asp) has been shown to play a crucial role in the neuroendocrine and endocrine systems as well as in the central nervous system. Here, we present an overview of recent studies of free D-Asp, focusing on the analytical methods in real biological matrices, expression and localization in tissues and cells, biological and physiological activities, biosynthesis, degradation, cellular transport, and possible relevance to disease. In addition to frequently used techniques for the enantiomeric determination of amino acids, including high-performance liquid chromatography and enzymatic methods, the recent development of analytical methods is also described.  相似文献   

11.
Several substrates and roles have been proposed for D-amino acid oxidase (E.C. 1.4.3.3.); however, there is no proof that they possess the required characteristics to account for the ubiquity, large amounts and great activity of the enzyme as found in diverse cells and tissues. Based on the similar stereoposition of identically charged atoms and lateral side chain (R) with respect to the alpha-hydrogen atoms in beta-sheet conformation and in D-amino acids, it is proposed that its substrates may include several membrane-related proteins, partially in beta-sheet conformation, whose alpha-hydrogen atoms would be the real object of D-amino acid oxidase catalysis. A monooxygenase-like enzymatic activity of D-amino acid oxidase with these novel substrates is considered, for which the final products are hypothesized to be protein alpha-carbon hydroxyls resulting from the incorporation of one atom of oxygen into the substrate, the other being reduced to water. Alternatively, it is also proposed that D-amino acid oxidase (and possibly other monooxygenase enzymes) would have a hydroperoxide-synthetase activity. In this case, protein alpha-carbon hydroperoxide and not water, but another reduced molecule, would be the final products. The new enzymatic performances of D-amino acid oxidase and the possible role of its potential final products in redox and other biochemical processes are discussed.  相似文献   

12.
1. Two simple, rapid and sensitive methods are described for measurement of D-amino acid oxidase (DAO) activity using crude tissue extracts for the study of distribution patterns. 2. They detect products of oxidative deamination of D-amino acids catalyzed by DAO, i.e. alpha-keto acids and H2O2 by measuring light absorbances at 445 and 500 nm, respectively. 3. Reliability of the methods was confirmed by quantitative detection of DAO added to the tissue extract, based on standard curves, time courses and values of Km and Ki, obtained using D-Ala as substrate.  相似文献   

13.
d-Amino acids are stereoisomers of l-amino acids. They are often called unnatural amino acids, but several d-amino acids have been found in mammalian brains. Among them, d-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. d-Amino-acid oxidase (DAO), which degrades neutral and basic d-amino acids, is mainly present in the hindbrain. DAO catabolizes d-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of d-serine and other d-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of d-serine. d-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that d-amino acids and DAO have pivotal functions in the central nervous system.  相似文献   

14.
In order to evaluate the possible contributions of Lys-204, Tyr-224, Tyr-228, and His-307 in porcine kidney D-amino acid oxidase [EC 1.4.3.3] (DAO) to its catalytic function, we constructed four point mutant cDNAs encoding enzymes possessing Glu-204, Phe-224, Phe-228, and Leu-307 by oligonucleotide-directed in vitro mutagenesis. The four mutant cDNAs and the wild type cDNA could be expressed in vitro with similar efficiencies and about 200 ng of each enzyme protein was produced from 5 micrograms of the respective capped RNA. The electrophoretic mobilities of the in vitro synthesized mutant enzymes on SDS-polyacrylamide gel were almost identical with that of the wild type DAO, and the molecular weight was calculated to be 38,000. The Glu-204 and Phe-224 mutant DAOs showed comparable enzyme activities to that of the wild type enzyme, and were inhibited strongly by sodium benzoate, a potent competitive inhibitor of DAO. The kinetic parameters of the two mutant DAOs were also comparable to those of the wild type DAO. On the other hand, the Phe-228 and Leu-307 mutant DAOs showed no detectable activity. The results indicate that Tyr-228 and His-307 play important roles as to the constitution of the active site or participate in the reaction directly, while Lys-204 and Tyr-224 are not essential in the enzyme reaction.  相似文献   

15.
A method for the quantitative determination of several D-amino acids in the range of 0.05-1 nmol per assay (0.25-5 microM) is described. It is insensitive to the presence of excesses of the respective L-amino acids. The assay system employs D-amino-acid oxidase (hog kidney), peroxidase (horse radish) and luminol; the total photon output elicited by the oxidation of the D-amino acids is determined. The different reactivity of individual D-amino acids with D-amino-acid oxidase limits the applicability of the assay. Indications for the usefulness of immobilized enzymes in D-amino-acid analysers are also given.  相似文献   

16.
D-Amino acid oxidase (DAO, EC 1.4.3.3) from a methylotrophic yeast, Candida boidinii, was produced at a high level under the control of the alcohol oxidase gene promoter in the original host. The enzyme was a peroxisomal and monomeric enzyme, and contained noncovalently-bound FAD as a cofactor. The enzyme was active toward several D-amino acids such as D-Ala, D-Met, and D-Ser. An alcohol oxidase-depleted strain (aod1delta) was found to be a more suitable host for DAO production than the wild-type strain. Several post-translational effects may be responsible for the improvement of the DAO productivity by the aod1delta strain. Finally, an aod1delta strain transformant having multi-copies of an expression plasmid on its chromosome could produce DAO amounting up to 30% of the total soluble proteins.  相似文献   

17.
D-氨基酸氧化酶(D-amino acid oxidase:oxidoreductase, DAAO, EC 1.4.3.3)是一种以黄素腺嘌呤(FAD)为辅基的典型黄素蛋白酶类,可氧化D-氨基酸的氨基生成相应的酮酸和氨。在体内D-氨基酸的代谢中起着重要作用。主要介绍了D-氨基酸氧化酶的生理功能和应用、表达条件优化及通过定点突变对酶学性质的研究。  相似文献   

18.
To determine the quantity of free amino acids, the D- and L-forms separately, is an important task in modern nutritional studies. The aim of our present work was to develop rapid, routine methods for fast determination of the different forms of free amino acids. We utilized two enzymes (L-amino acid oxidase, D-amino acid oxidase) with broad specificity. In our home-made reactors, the enzymes were immobilized in a thin-layer Plexi-cell on natural protein membrane. The enzyme-cell was built into a FIA system and the hydrogen peroxide generated during the enzymatic reaction was determined by an amperometric detector. The electrode potential was fixed at +100 mV. The parameters for the biochemical and electrochemical reactions were optimized in each case. The optimal pH value for measuring L- and D-amino acids was found ca. 8.8 and 9.5, respectively. The LAO reactor could be used for more than 900 measurements, while the DAO reactor for about 1000 measurements. The working concentration range was between 0.1-3 and 0.2-3 mM, respectively. The same standard solution (L- and D-Methionine, 1 mM) was injected 25 times sequentially and the standard deviations were 2 and 2.7%, respectively. After determining the optimal parameters, the specificity of the immobilized enzyme preparations towards different amino acids and in samples from different stages of brewing was investigated.  相似文献   

19.
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks.  相似文献   

20.
The ultrastructural localization of D-amino acid oxidase (DAO) was studied cytochemically by detecting sites of hydrogen peroxide production in human polymorphonuclear leukocytes (PMNs). Reaction product, which forms when cerous ions react with H2O2 to form an electron-dense precipitate, was demonstrated on the cell surface and within the phagosomes of phagocytically stimulated cells when D-amino acids were provided as substrate. Resting cells showed only slight activity. The competitive inhibitor D,L-2-hydroxybutyrate greatly reduced the D-amino acid-stimulated reaction while KCN did not. The cell surface reaction was abolished by nonpenetrating inhibitors of enzyme activity while that within the phagosome was not eliminated. Dense accumulations of reaction product were formed in cells which phagocytosed Staphylococcus aureus in the absence of exogenous substrate. No reaction product formed with Proteus vulgaris while an intermediate amount formed when Escherichia coli were phagocytosed. Variation in the amount of reaction product with the different bacteria correlated with the levels of D-amino acids in the bacterial cell walls which are available for the DAO of PMNs. An alternative approach utilizing ferricyanide as an electron acceptor was also used. This technique verified the results obtained with the cerium reaction, i.e., the DAO is located in the cell surface and is internalized during phagocytosis and is capable of H2O2 production within the phagosome. The present finding that DAO is localized on the cell surface further supports the concept that the plasma membrane is involved in peroxide formation in PMNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号