首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.  相似文献   

2.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

3.
Plasmids have been described in almost all bacterial species analysed and have proven to be essential genetic tools. In many bacteria these extrachromosomal DNAs are cryptic with no known markers or function, which makes their characterization and genetic exploitation extremely difficult. Here we describe a system that will allow the rescue of any circular DNA (plasmid or phage) using an in vitro transposition system to deliver both a selectable marker (kanamycin) and an Escherichia coli plasmid origin of replication. In this study, we demonstrate the rescue of four cryptic plasmids from the opportunistic pathogen Mycobacterium avium. To evaluate the host range of the rescued plasmids, we have examined their ability to be propagated in Mycobacterium smegmatis and Mycobacterium bovis BCG, and their compatibility with other mycobacterial plasmids. In addition, we use a library of transposon insertions to sequence one plasmid, pVT2, and to begin a genetic analysis of plasmid genes. Using this approach, we identified a putative conjugative relaxase, suggesting this myco-bacterial plasmid is transferable, and three genes required for plasmid establishment and replication.  相似文献   

4.
Bacterial plasmids are ubiquitous ‘minichromosomes’ that have major importance in clinical microbiology, as agents of pathogenicity and as carriers of antibiotic resistance, and in molecular genetics, through their role as vectors in gene manipulation. Plasmids carry a wide range of dispensable, transiently useful and often bizarre functions.1 Naturally occurring plasmids, in addition to modifying the host cell phenotype, carry genes involved in the control of their own vegetative replication, plasmid copy number2 and stable inheritance. They may also carry determinants for the conjugal transfer of DNA between bacteria.3 Whereas low-copy-number plasmids must be partitioned by some active process during cell division, the evidence suggests that multicopy plasmids are distributed randomly between daughter cells. Two independent determinants are necessary for the stable inheritance of multicopy plasmids, and both of these appear to act by maximizing the number of independent plasmid molecules.  相似文献   

5.
Construction of transposons carrying the transfer functions of RP4   总被引:1,自引:0,他引:1  
D A Johnson 《Plasmid》1988,20(3):249-258
The transfer genes and origin of transfer of the wide host range plasmid RP4 have been cloned into the transposons Tn1 and Tn5. The newly constructed transposons can be used to mutagenize bacterial plasmids or the chromosome in species such as Escherichia coli or Rhizobium. It is then possible to mobilize the plasmid or chromosome using the transfer functions provided in cis by the transposon. These constructs may aid chromosome mapping in many gram-negative species by allowing the wider use of the RP4 conjugal transfer system combined with the potential ability to select the site of insertion and thus the site of the origin of transfer.  相似文献   

6.
We observed that Aeromonas salmonicida ARO200 will maintain either or both the Pseudomonas R-factor, pMG1, and Enterobacteriaceae R-factors. This bacterial strain, therefore, provides a unique background wherein the host ranges of Pseudomonas and Enterobacteriaceae plasmods overlap. Co-maintenance of these plasmids resulted in behavior of plasmid aggregates that allowed transfer of R-dterminants beyond the host range of the parent plasmid. We observed that the ARO200 genetic background facilitated the redistribution of B determinants among unrelated and conjugally noninterfertile gram-negative bacteria. Aberrant behavior resulting in the deletion of R-determinants for plasmids singly maintained in ARO200 was also observed. Plasmids studied included RP1, R702, IncP; Rs-a, IncW; R192.7, IncFII; R64-11, IncI; R390, IncN; and R6K, IncX.  相似文献   

7.
Plasmids have a key role in the horizontal transfer of genes among bacteria. Although plasmids are catalysts for bacterial evolution, it is challenging to understand how they can persist in bacterial populations over the long term because of the burden they impose on their hosts (the ‘plasmid paradox''). This paradox is especially perplexing in the case of ‘small'' plasmids, which are unable to self-transfer by conjugation. Here, for the first time, we investigate how interactions between co-infecting plasmids influence plasmid persistence. Using an experimental model system based on interactions between a diverse assemblage of ‘large'' plasmids and a single small plasmid, pNI105, in the pathogenic bacterium Pseudomonas aeruginosa, we demonstrate that positive epistasis minimizes the cost associated with carrying multiple plasmids over the short term and increases the stability of the small plasmid over a longer time scale. In support of these experimental data, bioinformatic analysis showed that associations between small and large plasmids are more common than would be expected owing to chance alone across a range of families of bacteria; more generally, we find that co-infection with multiple plasmids is more common than would be expected owing to chance across a wide range of bacterial phyla. Collectively, these results suggest that positive epistasis promotes plasmid stability in bacterial populations. These findings pave the way for future mechanistic studies aimed at elucidating the molecular mechanisms of plasmid–plasmid interaction, and evolutionary studies aimed at understanding how the coevolution of plasmids drives the spread of plasmid-encoded traits.  相似文献   

8.
Plasmids of the IncP-1 incompatibility group are self-transmissible between and stably maintained in a very broad range of Gram-negative bacteria. A characteristic feature of IncP-1 genomes is the existence of multiple binding sites (OB) for the KorB protein which plays a dual role in active partitioning of plasmid and coordinate regulation of expression of genes for replication, maintenance and transfer. A search of the available bacterial genome sequences revealed a significant number (70 out of 322) with one or more putative KorB binding sites. Binding of KorB to such a site was demonstrated by chromatin immunoprecipitation (ChIP) for Pseudomonas putida KT2440. While such a site may arise by chance, this is unlikely for Pseudomonas aeruginosa UCBPP-PA14 whose genome sequence contains four clustered OB sites and several regions have more than 80% nucleotide identity to traJ, trbJ and trbL of IncP-1 plasmids. A number of other bacterial genomes also contain integrated partial IncP-1 genomes or their remnants. These data provide evidence for multiple past integration events of IncP-1 plasmids into bacterial chromosomes and provide new evidence for IncP-1 plasmids being important elements in gene mobility.  相似文献   

9.
The contribution of the carthworm Lumbricus rubellus in spreading plasmids from a nonindigenous bacterial species to the soil microbial community was studied with Escherichia coli strains as donor organisms. The selected donor strains harbored marker-gene tagged plasmids with different transfer properties and host ranges. Prototrophic benzoate degrading indigenous bacteria were analyzed as potential recipients. In filter-mating experiments, donor strains were mixed with bacterial cell consortia extracted from earthworm casts (feces) and incubated on nutrient agar at 28°C. Transfer was detected with the broad host range IncP plasmid pRP4luc; with the IncQ plasmid, pSUP104luc, but only when it was present in a mobilizing donor strain; and with the transposon delivery vector pUTlux. No transfer was detected with the nonmobilizable pUCluc and the mobilizable pSUP202luc, both of narrow host range. In microcosm studies with E. coli inoculated soil incubated at 12°C, transconjugants were only detected in casts of L. rubellus but not in bulk soil, indicating that the gut passage was a precondition for plasmid transfer. Plasmid pRP4luc was transferred at higher frequencies than detected in filter mating. Results of the filter matings were confirmed except that transfer of pUTlux could not be detected. The majority of transconjugants isolated in this study lost their acquired plasmid upon further cultivation. Stable transconjugants, however, were obtained and identified at the 16S rRNA gene level as members of the β- and γ-subgroups of Proteobacteria. Incubation of E. coli and selected transconjugants in soil microcosms with L. rubellus demonstrated that the gut passage resulted in a slight but significant reduction of ingested cells. In contrast to the donor strains, however, the population sizes of transconjugants in bulk soil and in casts did not decrease over time. This demonstrated that the transferred plasmids had established themselves in the soil microbial community.  相似文献   

10.
Plasmids belonging to Escherichia coli incompatibility group Q are relatively small (approximately 5 to 15 kb) and able to replicate in a remarkably broad range of bacterial hosts. These include gram-positive bacteria such as Brevibacterium and Mycobacterium and gram-negative bacteria such as Agrobacterium, Desulfovibrio, and cyanobacteria. These plasmids are mobilized by several self-transmissible plasmids into an even more diverse range of organisms including yeasts, plants, and animal cells. IncQ plasmids are thus highly promiscuous. Recently, several IncQ-like plasmids have been isolated from bacteria found in environments as diverse as piggery manure and highly acidic commercial mineral biooxidation plants. These IncQ-like plasmids belong to different incompatibility groups but have similar broad-host-range replicons and mobilization properties to the IncQ plasmids. This review covers the ecology, classification, and evolution of IncQ and IncQ-like plasmids.  相似文献   

11.
Plasmids are units of extrachromosomal genetic inheritance found in all kingdoms of life. They replicate autonomously and undergo stable propagation in their hosts. Despite their small size, plasmid replication and gene expression constitute a metabolic burden that compromises their stable maintenance in host cells. This pressure has driven the evolution of strategies to increase plasmid stability--a process accelerated by the ability of plasmids to transfer horizontally between cells and to exchange genetic material with their host and other resident episomal DNAs. These abilities drive the adaptability and diversity of plasmids and their host cells. Indeed, survival functions found in plasmids have chromosomal homologues that have an essential role in cellular responses to stress. An analysis of these functions in the prokaryotic plasmid R1, and of their intricate interrelationships, reveals remarkable overall similarities with other gene- and cell-survival strategies found within and beyond the prokaryotic world.  相似文献   

12.
Plasmid curing in bacteria   总被引:5,自引:0,他引:5  
  相似文献   

13.
Plasmids are extrachromosomal elements built from a selection of generally quite well understood survival and propagation functions, including replication, partitioning, multimer resolution, post-segregational killing and conjugative transfer. Evolution has favoured clustering of these modules to form plasmid cores or backbones. Co-regulation of these core genes can also provide advantages that favour retention of the backbone organization. Tumour-inducing and symbiosis-determining plasmids appear to co-regulate replication and transfer in response to cell density, both being stimulated at high density. Broad-host-range plasmids of the IncP-1 group, on the other hand, have autogenous control circuits, which allow a burst of expression during establishment in a new host, but a minimum of expression during maintenance. The lessons that plasmids have for clustering and co-regulation may explain the logic and organization of many small bacterial genomes currently being investigated.  相似文献   

14.
Plasmids are ubiquitous mobile elements that serve as a pool of many host beneficial traits such as antibiotic resistance in bacterial communities. To understand the importance of plasmids in horizontal gene transfer, we need to gain insight into the ‘evolutionary history’ of these plasmids, i.e. the range of hosts in which they have evolved. Since extensive data support the proposal that foreign DNA acquires the host's nucleotide composition during long-term residence, comparison of nucleotide composition of plasmids and chromosomes could shed light on a plasmid's evolutionary history. The average absolute dinucleotide relative abundance difference, termed δ-distance, has been commonly used to measure differences in dinucleotide composition, or ‘genomic signature’, between bacterial chromosomes and plasmids. Here, we introduce the Mahalanobis distance, which takes into account the variance–covariance structure of the chromosome signatures. We demonstrate that the Mahalanobis distance is better than the δ-distance at measuring genomic signature differences between plasmids and chromosomes of potential hosts. We illustrate the usefulness of this metric for proposing candidate long-term hosts for plasmids, focusing on the virulence plasmids pXO1 from Bacillus anthracis, and pO157 from Escherichia coli O157:H7, as well as the broad host range multi-drug resistance plasmid pB10 from an unknown host.  相似文献   

15.
Plasmids are extrachromosomal genetic elements capable of autonomous replication within a host cell. They play a key role in bacterial ecology and evolution, facilitating the mobilization of accessory genes by horizontal gene transfer. Crucially, plasmids also serve as valuable tools in modern molecular biology. Here, we highlight recent articles aimed at implementing standardized plasmid assembly techniques and plasmid repositories to promote open science as well as to improve experimental reproducibility across laboratories. Research focused on assisting these fundamental aims is a further step towards improving standardization in molecular and synthetic biology.  相似文献   

16.
Bacterial plasmids deploy a diverse range of regulatory mechanisms to control expression of the functions they need to survive in the host population. Understanding of the mechanisms by which autoregulatory circuits control plasmid survival functions, in particular plasmid replication, has been advanced by recent studies. At a molecular level, structural understanding of how certain antisense RNAs control replication and stability functions is almost complete. Control circuits linking plasmid transfer functions to the status of the bacterial population have been dissected, uncovering a complex and hierarchical organisation. Coordinate or global regulation of plasmid replication, transfer and stable maintenance functions is becoming apparent across a range of plasmid families.  相似文献   

17.
Klebsiella pneumoniae 287-w carries three small narrow host range (NHR) plasmids (pIGMS31, pIGMS32, and pIGRK), which could be maintained in several closely related species of Gammaproteobacteria, but not in Alphaproteobacteria. The plasmids contain different mobilization systems (MOB), whose activity in Escherichia coli was demonstrated in the presence of the helper transfer system originating from plasmid RK2. The MOBs of pIGMS31 and pIGMS32 are highly conserved in many bacterial plasmids (members of the MOB family), while the predicted MOB of pIGRK has a unique structure, encoding a protein similar to phage-related integrases. The MOBs of pIGMS31 and pIGMS32 enabled the transfer of heterologous replicons from E. coli into both gammaproteobacterial and alphaproteobacterial hosts, which suggests that these NHR plasmids contain broad host range MOB systems. Such plasmids therefore represent efficient carrier molecules, which may act as natural suicide vectors promoting the spread of diverse genetic information (including other types of mobile elements, e.g. resistance transposons) among evolutionarily distinct bacterial species. Thus, mobilizable NHR plasmids may play a much more important role in horizontal gene transfer than previously thought.  相似文献   

18.
Dahlberg C  Chao L 《Genetics》2003,165(4):1641-1649
Although plasmids can provide beneficial functions to their host bacteria, they might confer a physiological or energetic cost. This study examines how natural selection may reduce the cost of carrying conjugative plasmids with drug-resistance markers in the absence of antibiotic selection. We studied two plasmids, R1 and RP4, both of which carry multiple drug resistance genes and were shown to impose an initial fitness cost on Escherichia coli. To determine if and how the cost could be reduced, we subjected plasmid-containing bacteria to 1100 generations of evolution in batch cultures. Analysis of the evolved populations revealed that plasmid loss never occurred, but that the cost was reduced through genetic changes in both the plasmids and the bacteria. Changes in the plasmids were inferred by the demonstration that evolved plasmids no longer imposed a cost on their hosts when transferred to a plasmid-free clone of the ancestral E. coli. Changes in the bacteria were shown by the lowered cost when the ancestral plasmids were introduced into evolved bacteria that had been cured of their (evolved) plasmids. Additionally, changes in the bacteria were inferred because conjugative transfer rates of evolved R1 plasmids were lower in the evolved host than in the ancestral host. Our results suggest that once a conjugative bacterial plasmid has invaded a bacterial population it will remain even if the original selection is discontinued.  相似文献   

19.
The plasmid RSF1010 belongs to a class of plasmids (IncQ) that replicate in a range of bacterial hosts. Although non-self-transmissible, it can be mobilized at high frequency between different gram-negative bacterial species if transfer functions are supplied in trans. We report the transfer of RSF1010 by conjugation from Escherichia coli to the gram-positive actinomycetes Streptomyces lividans and Mycobacterium smegmatis. In its new hosts, the plasmid was stable with respect to structure and inheritance and conferred high-level resistance to streptomycin and sulfonamide. This is the first reported case of conjugative transfer of a naturally occurring plasmid between gram-negative and gram-positive bacteria.  相似文献   

20.
Broad host range gene transfer: plasmids and conjugative transposons   总被引:2,自引:0,他引:2  
Abstract Conjugation is the primary route of broad host range DNA transfer between different genera of bacteria. Plasmids are the most familiar conjugative elements, but there are also self-transmissible integrated elements called conjugative transposons. Conjugative transposons have been found in many genera of gram-positive bacteria, in mycoplasmas and in gram negative bacteria such as Bacteriodes spp. and Moraxella spp., and they have a very broad host range. The best-studied conjugative transposons are: the ones related to Tn 916 , a 16 kb conjugative transposon found originally in Gram-positive bacteria; Tn 5276 , a 70 kb conjugative transposon from Lactococcus lactis ; and a group of large (> 70 kb) conjugative transposons found in Bacteroides spp. Transfer of conjugative transposons takes place in three steps: excision to form a circular intermediate, transfer of one strand of the circular intermediate to a recipient, and integration into the recipient genome. Some conjugative transposons integrate almost randomly, whereas other integrate site-specifically. Conjugative transposons not only transfer themselves but also mobilize co-resident plasmids, either by providing transfer functions in trans or by inserting themselves into the plasmid. In addition, the conjugative transposons found in Bacteroides spp. can excise and mobilize unlinked integrated elements, called NBUs. Transfer of many of the Bacteroides conjugative transposons is regulated by tetracycline, whereas transfer of Tn 916 and other conjugative transposons appears to be constitutive. The conjugative transposons are clearly widespread in clinical isolates, but their distribution in environmental isolates remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号