首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/β hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli. Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity.  相似文献   

2.
Glycerophospholipids are important components of cellular membranes, required for constructing structural barriers, and for providing precursors of bioactive lipid mediators. Lysophosphatidic acid acyltransferases (LPAATs) are enzymes known to function in the de novo glycerophospholipid biosynthetic pathway (Kennedy pathway), using lysophosphatidic acid (LPA) and acyl-CoA to form phosphatidic acid (PA). Until now, three LPAATs (LPAAT1, 2, and 3) have been reported from the 1-acyl-glycerol-3-phosphate O-acyltransferase (AGPAT) family. In this study, we identified a fourth LPAAT enzyme, LPAAT4, previously known as an uncharacterized enzyme AGPAT4 (LPAATδ), from the AGPAT family. Although LPAAT4 was known to contain AGPAT motifs essential for acyltransferase activities, detailed biochemical properties were unknown. Here, we found that mouse LPAAT4 (mLPAAT4) possesses LPAAT activity with high acyl-CoA specificity for polyunsaturated fatty acyl-CoA, especially docosahexaenoyl-CoA (22:6-CoA, DHA-CoA). mLPAAT4 was distributed in many tissues, with relatively high expression in the brain, rich in docosahexaenoic acid (DHA, 22:6). mLPAAT4 siRNA in a neuronal cell line, Neuro 2A, caused a decrease in LPAAT activity with 22:6-CoA, suggesting that mLPAAT4 functions endogenously. siRNA in Neuro 2A cells caused a decrease in 18:0–22:6 PC, whereas mLPAAT4 overexpression in Chinese hamster ovary (CHO)-K1 cells caused an increase in this species. Although DHA is considered to have many important functions for the brain, the mechanism of its incorporation into glycerophospholipids is unknown. LPAAT4 might have a significant role for maintaining DHA in neural membranes. Identification of LPAAT4 will possibly contribute to understanding the regulation and the biological roles of DHA-containing glycerophospholipids in the brain.  相似文献   

3.
Membrane topology of human AGPAT3 (LPAAT3)   总被引:1,自引:0,他引:1  
Integral membrane lysophospholipid acyltransferases (AT) are involved in many reactions that produce phospholipids and triglycerides. Enzymes that utilize lysophosphatidic acid (LPA) as an acceptor substrate have been termed LPAATs, and several are members of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) gene family. Amino acid sequence comparisons with other acyltransferases reveal that AGPATs contain four conserved motifs (I-IV), whose invariant residues appear to be important for catalysis and/or substrate recognition. Although the enzymatic activities of many AGPATs are known, for many members their structural organization within membranes and their exact biological functions are unclear. Recently, a new function for AGPATs was discovered when it was determined that human AGPAT3/LPAAT3 is involved in the structure and function of the Golgi complex. Here we have determined the topological orientation of human AGPAT3/LPAAT3. AGPAT3/LPAAT3 possesses two transmembrane domains, one of which separates motifs I and II, which are thought to form a functional unit that is critical for enzymatic activity. This is a surprising result but similar to a recent study on the topology of human LPAAT 1. The data is consistent with a structural arrangement in which motif I is located in the cytoplasm and motif II is in the endoplasmic reticulum and Golgi lumen, suggesting a different model for AGPAT3/LPAAT3’s enzymatic mechanism.  相似文献   

4.
溶血磷脂酸酰基转移酶(Lysophosphatidic acid acyltransferase, LPAAT)是油脂合成途径中的一个关键酶,能催化溶血磷脂酸转变为磷脂酸。本研究从雷蒙德氏棉(G. raimondii, D5)和亚洲棉(G. arboreum, A2)的基因组数据中得到17个LPAAT基因家族成员。利用生物信息学方法对二倍体棉花LPAAT基因进行基因结构、染色体分布以及系统进化分析。结果表明,LPAAT基因家族根据亲缘关系的远近可以分为不同的亚家族,各亚家族中LPAAT基因具有相似的基因结构;LPAAT家族基因编码的氨基酸序列具有3个保守基序,其中包括ΦFPEGTR-G结合位点和Φ-NHQS-ΦDΦΦ催化位点;通过对不同物种的LPAAT基因家族进行系统进化分析可知,不同物种中的LPAAT在进化中存在较大差异。基于陆地棉(G. hirsutum)不同发育时期的胚珠RNA-seq数据库和qRT-PCR表达分析,发现LPAAT基因可能对脂肪积累起到积极作用。本研究结果有助于了解棉属植物LPAAT基因家族的功能,以期从中选取较好的LPAAT基因进行进一步功能验证。  相似文献   

5.
Lysophosphatidic acid acyltransferase (LPAAT) δ/acylglycerophosphate acyltransferase 4 is a mitochondrial enzyme and one of five homologues that catalyze the acyl-CoA-dependent synthesis of phosphatidic acid (PA) from lysophosphatidic acid. We studied skeletal muscle LPAATδ and found highest levels in soleus, a red oxidative fibre-type that is rich in mitochondria, and lower levels in extensor digitorum longus (EDL) (white glycolytic) and gastrocnemius (mixed fibre-type). Using Lpaatδ-deficient mice, we found no change in soleus or EDL mass, or in treadmill time-to-exhaustion compared to wildtype littermates. There was, however, a significant reduction in the proportion of type I and type IIA fibres in EDL but, surprisingly, not soleus, where these fibre-types predominate. Also unexpectedly, there was no impairment in force generation by EDL, but a significant reduction by soleus. Oxidative phosphorylation and activity of complexes I, I?+?II, III, and IV in soleus mitochondria was unchanged and therefore could not explain this effect. However, pyruvate dehydrogenase activity was significantly reduced in Lpaatδ?/? soleus and EDL. Analysis of cellular lipids indicated no difference in soleus triacylglycerol, but specific elevations in soleus PA and phosphatidylethanolamine levels, likely due to a compensatory upregulation of Lpaatβ and Lpaatε in Lpaatδ?/? mice. An anabolic effect for PA as an activator of skeletal muscle mTOR has been reported, but we found no change in serine 2448 phosphorylation, indicating reduced soleus force generation is unlikely due to the loss of mTOR activation by a specific pool of LPAATδ-derived PA. Our results identify an important role for LPAATδ in soleus and EDL.  相似文献   

6.
CoA-dependent transacylation activity in microsomes is known to catalyze the transfer of fatty acids between phospholipids and lysophospholipids in the presence of CoA without the generation of free fatty acids. We previously found a novel acyl-CoA synthetic pathway, ATP-independent acyl-CoA synthesis from phospholipids. We proposed that: 1) the ATP-independent acyl-CoA synthesis is due to the reverse reaction of acyl-CoA:lysophospholipid acyltransferases and 2) the reverse and forward reactions of acyltransferases can combine to form a CoA-dependent transacylation system. To test these proposals, we examined whether or not recombinant mouse acyl-CoA:1-acyl-sn-glycero-3-phosphate (lysophosphatidic acid, LPA) acyltransferase (LPAAT) could catalyze ATP-independent acyl-CoA synthetic activity and CoA-dependent transacylation activity. ATP-independent acyl-CoA synthesis was indeed found in the membrane fraction from Escherichia coli cells expressing mouse LPAAT, whereas negligible activity was observed in mock-transfected cells. Phosphatidic acid (PA), but not free fatty acids, served as an acyl donor for the reaction, and LPA was formed from PA in a CoA-dependent manner during acyl-CoA synthesis. These results indicate that the ATP-independent acyl-CoA synthesis was due to the reverse reaction of LPAAT. In addition, bacterial membranes containing LPAAT catalyzed CoA-dependent acylation of LPA; PA but not free fatty acid served as an acyl donor. These results indicate that the CoA-dependent transacylation of LPA consists of 1) acyl-CoA synthesis from PA through the reverse action of LPAAT and 2) the transfer of the fatty acyl moiety of the newly formed acyl-CoA to LPA through the forward reaction of LPAAT.  相似文献   

7.
8.
9.
Long-chain polyunsaturated fatty acids (PUFAs) accumulate in mammalian testis during puberty and are essential for fertility. To investigate whether lysophospholipid acyltransferases determine the PUFA composition of testicular phospholipids during pubertal development, we compared their mRNA expression, in vitro activity, and specificity with the lipidomic profile of major phospholipids. The accumulation of PUFAs in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine correlated with an induced lysophosphatidic acid acyltransferase (LPAAT)3 mRNA expression, increased microsomal LPAAT3 activity, and shift of LPAAT specificity to PUFA-coenzyme A. LPAAT3 was induced during germ cell maturation, as shown by immunofluorescence microscopy. Accordingly, differentiation of mouse GC-2spd(ts) spermatocytes into spermatides up-regulated LPAAT3 mRNA, increased the amount of polyunsaturated phospholipids, and shifted the specificity for the incorporation of deuterium-labeled docosahexaenoic acid toward phosphatidylcholine and phosphatidylethanolamine. Stable knockdown of LPAAT3 in GC-2spd(ts) cells significantly decreased microsomal LPAAT3 activity, reduced levels of polyunsaturated phosphatidylethanolamine species, and impaired cell proliferation/survival during geneticin selection. We conclude that the induction of LPAAT3 during germ cell development critically contributes to the accumulation of PUFAs in testicular phospholipids, thereby possibly affecting sperm cell production.  相似文献   

10.
Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme.  相似文献   

11.
12.
Thrombin is a potent stimulant of smooth muscle cell (SMC) proliferation in inflammatory conditions, leading to pathological thickening of vascular walls in atherosclerosis and airway remodeling in asthma. Cell proliferation requires the formation and remodeling of cell membrane phospholipids (PLs), involving the activation of PL-metabolizing enzymes. Yet, the role of specific PL-metabolizing enzymes in SMC proliferation has hardly been studied. To bridge this gap, in the present study, we investigated the role of key enzymes involved in PL metabolism, the PL-hydrolyzing enzyme phospholipase A2 (PLA2) and the PL-synthesizing enzyme lysophosphatidic acid-fatty acid transacylase (LPAAT), in thrombin-induced proliferation of bovine aortic SMCs (BASMCs). Concomitantly with the induction of BASMC proliferation, thrombin activated cytosolic PLA2 (cPLA2-alpha), expressed by selective release of arachidonic acid and mRNA expression, as well as LPAAT, expressed by nonselective incorporation of fatty acid and mRNA expression. Specific inhibitors of these enzymes, arachidonyl-trifluoromethyl-ketone for cPLA2 and thimerosal for LPAAT, suppressed their activities, concomitantly with suppression of BASMC proliferation, suggesting a mandatory requirement for cPLA2 and LPAAT activation in thrombin-induced SMC proliferation. Thrombin acts through the protease-activated receptor (PAR-1), and, accordingly, we found that thrombin-induced BASMC proliferation was suppressed by the PAR-1 inhibitor SCH-79797. However, the PAR-1 inhibitor did not prevent thrombin-induced mRNA expression of cPLA2 and LPAAT, implying that the activation of cPLA2 and LPAAT is essential but not sufficient for thrombin-induced proliferation of BASMCs.  相似文献   

13.
Cyclin-dependent kinase-5 (CDK-5) has been shown to play important roles in neuronal development and neurogenesis. In vitro studies indicate a role of CDK-5 in phosphorylation of neurofilaments (NFs). In this study, we have chosen the human neuroblastoma cell line SHSY5Y as a model system to study the in vivo phosphorylation of NF proteins by CDK-5. Upon differentiation of SHSY5Y cells with retinoic acid, we found that the phosphorylation of high molecular mass (NF-H) and medium molecular mass (NF-M) NFs increased, whereas the CDK-5 protein level and kinase activity were unaffected. The role of CDK-5 in the phosphorylation of cytoskeletal proteins was studied by using antisense oligonucleotides (ONs) to inhibit the expression of the CDK-5 gene. We found that inhibition of CDK-5 levels by antisense ON treatment resulted in a decrease in phosphorylation of NF-H that correlated with a decline in neurite outgrowth. These results demonstrate that CDK-5 is a major proline-directed kinase phosphorylating the human NF-H tail domain.  相似文献   

14.
Protein tyrosine phosphorylation has been implicated in the growth and functional responses of hematopoietic cells. Recently, approaches have been developed to characterize the protein tyrosine phosphatases that may contribute to regulation of protein tyrosine phosphorylation. One novel protein tyrosine phosphatase was expressed predominantly in hematopoietic cells. Hematopoietic cell phosphatase encodes a 68-kDa protein that contains a single phosphatase conserved domain. Unlike other known protein tyrosine phosphatases, hematopoietic cell phosphatase contains two src homology 2 domains. We also cloned the human homolog, which has 95% amino acid sequence identity. Both the murine and human gene products have tyrosine-specific phosphatase activity, and both are expressed predominantly in hematopoietic cells. Importantly, the human gene maps to chromosome 12 region p12-p13. This region is associated with rearrangements in approximately 10% of cases of acute lymphocytic leukemia in children.  相似文献   

15.
Membranes of mammalian cells contain lysophosphatidic acid acyltransferase (LPAAT) activities that catalyze the acylation of sn-1-acyl lysophosphatidic acid (lysoPA) to form phosphatidic acid. As the biological roles and biochemical properties of the six known LPAAT isoforms have yet to be fully elucidated, we have characterized human LPAAT-beta activity using two different assays. In a membrane-based assay, LPAAT-beta used lysoPA and lysophosphatidylmethanol (lysoPM) but not other lysophosphoglycerides as an acyl acceptor, and it preferentially transferred 18:1, 18:0, and 16:0 acyl groups over 12:0, 14:0, 20:0, and 20:4 acyl groups. The fact that lysoPM could traverse cell membranes permitted additional characterization of LPAAT-beta activity in cells: PC-3 and DU145 cells converted exogenously added lysoPM and (14)C-labeled 18:1 into (14)C-labeled phosphatidylmethanol (PM). The rate of PM formation was higher in cells that overexpressed LPAAT-beta and was inhibited by the LPAAT-beta inhibitor CT-32501. In contrast, if lysoPM and (14)C-labeled 20:4 were added to PC-3 or DU145 cells, (14)C-labeled PM was also formed, but the rate was neither higher in cells that overexpressed LPAAT-beta nor inhibited by CT-32501. We propose that LPAAT-beta catalyzes the intracellular transfer of 18:1, 18:0, and 16:0 acyl groups but not 20:4 groups to lysoPA.  相似文献   

16.
Carboxylic acids have various biological activities and play critical roles in cellular metabolic pathways such as the tricarboxylic acid (TCA) cycle. It has been shown that some carboxylic acids induce cell proliferation and production of cytokines or growth factors. However, there have been no reports on effects of carboxylic acids on hepatocyte growth factor (HGF) expression. In this study, we found that only maleic acid among various carboxylic acids examined markedly induced HGF production from human dermal fibroblasts. Maleic acid also induced HGF production from human lung fibroblasts and neuroblastoma cells. The stimulatory effect was accompanied by upregulation of HGF gene expression. Increase in phosphorylation of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) but not in phosphorylation of p38 was observed from 6 h and up to 24 h after maleic acid addition. The ERK kinase inhibitor PD98059 and the JNK inhibitor SP600125 potently inhibited maleic acid-induced HGF production, while the p38 inhibitor SB203580 did not significantly inhibit the production. The protein synthesis inhibitor cycloheximide completely inhibited upregulation of HGF mRNA induced by maleic acid but superinduced HGF mRNA expression upregulated by 12-O-tetradecanoylphorbol 13-acetate (TPA). These results suggest that maleic acid indirectly induced HGF expression from human dermal fibroblasts through activation of ERK and JNK and that de novo protein synthesis is required for maleic acid-induced upregulation of HGF mRNA.  相似文献   

17.
T Luo  J R Downing    J V Garcia 《Journal of virology》1997,71(3):2535-2539
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) encodes a 27 to 34 kDa myristoylated protein that induces downregulation of CD4 from the cell surface and enhances virus infectivity. As shown by experiments on SIV-infected adult macaques, Nef is important in pathogenesis and disease progression. In vitro, protein kinase C (PKC) phosphorylates Nef, but the role of phosphorylation in the function and expression of this protein has not yet been determined. Here we show that in HIV type 1-infected cells, phosphorylation of Nef increased 8- to 12-fold after treatment with phorbol myristate acetate and phytohemagglutinin (PMA/PHA). Basal and PMA/PHA-induced phosphorylation occurred on serine residues of Nef and was independent of other HIV proteins. The PMA/PHA-induced phosphorylation of Nef was inhibited by bisindolylmaleimide I, a potent and specific inhibitor of PKC, but was unaffected by H89, an inhibitor of protein kinase A. In contrast, treatment with bisindolylmaleimide I did not affect the basal level of Nef phosphorylation, suggesting two different phosphorylation pathways. A PMA-insensitive CD4 mutant in which three serine residues in the cytoplasmic domain have been replaced by alanines was used to determine whether PMA-induced phosphorylation affects Nef-induced CD4 downregulation. In Nef-expressing cells, treatment with PMA enhanced downregulation of the CD4 serine triple mutant from the cell surface, suggesting that phosphorylation is important for Nef function.  相似文献   

18.
Recent studies have suggested that the functional organization of the Golgi complex is dependent on phospholipid remodeling enzymes. Here, we report the identification of an integral membrane lysophosphatidic acid–specific acyltransferase, LPAAT3, which regulates Golgi membrane tubule formation, trafficking, and structure by altering phospholipids and lysophospholipids. Overexpression of LPAAT3 significantly inhibited the formation of Golgi membrane tubules in vivo and in vitro. Anterograde and retrograde protein trafficking was slower in cells overexpressing LPAAT3 and accelerated in cells with reduced expression (by siRNA). Golgi morphology was also dependent on LPAAT3 because its knockdown caused the Golgi to become fragmented. These data are the first to show a direct role for a specific phospholipid acyltransferase in regulating membrane trafficking and organelle structure.  相似文献   

19.
Various cell surface receptors are phosphorylated upon binding of their ligand, and this phosphorylation seems to be involved in the signal transduction or in the feedback regulation of this signal. The possibility of a phosphorylation of the human IFN-gamma receptor (hu-IFN-gamma-R) has been investigated with 32P-labeled whole Raji cells and receptor purification either by immunoprecipitation with an anti-hu-IFN-gamma-R polyclonal antiserum or by affinity chromatography. The hu-IFN-gamma-R was found to be phosphorylated at a basal level. Upon incubation of the cells with recombinant hu-IFN-gamma, a dose-dependent two-fold increase of this phosphorylation was observed. Phosphoamino acid analysis by TLC showed that the same amino acids, serine and threonine, are phosphorylated at a basal level and after incubation with hu-IFN-gamma. Protein kinase C and Ca2+/calmodulin-dependent kinase pathways have been reported in some cases to be involved in the signal transduction pathway of hu-IFN-gamma. Both pathways involved the activation of a serine/threonine kinase and therefore we have investigated the possibility of hu-IFN-gamma-R phosphorylation by these kinases. PMA, an activator of protein kinase C, induced a rapid increase of the receptor phosphorylation in Raji cells, whereas the Ca2+ ionophore A23187 did not. PMA-induced hu-IFN-gamma-R phosphorylation was not associated with any effect on expression or inactivation of the receptor. PMA alone did not mimic the hu-IFN-gamma effect in Raji cells as measured by induction of IP-10 gene expression, a high specific marker of hu-IFN-gamma response. But the protein kinase C inhibitors, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporine, reduced this IFN-gamma-induced expression. However, H7 and staurosporine treatment as well as protein kinase C depletion suppressed PMA-induced receptor phosphorylation, whereas constitutive and hu-IFN-gamma-induced phosphorylation remained unchanged. Our results suggest that the serine/threonine kinase involved in the hu-IFN-gamma-R phosphorylation induced by IFN-gamma is different from protein kinase C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号