首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partitioning of organic matter (OM) between dissolved and particulate phases is an important factor in determining the fate of organic carbon in the ocean. Dissolved organic matter (DOM) release by phytoplankton is a ubiquitous process, resulting in 2–50% of the carbon fixed by photosynthesis leaving the cell. This loss can be divided into two components: passive leakage by diffusion across the cell membrane and the active exudation of DOM into the surrounding environment. At present there is no method to distinguish whether DOM is released via leakage or exudation. Most explanations for exudation remain hypothetical; as while DOM release has been measured extensively, there has been relatively little work to determine why DOM is released. Further research is needed to determine the composition of the DOM released by phytoplankton and to link composition to phytoplankton physiological status and environmental conditions. For example, the causes and physiology of phytoplankton cell death are poorly understood, though cell death increases membrane permeability and presumably DOM release. Recent work has shown that phytoplankton interactions with bacteria are important in determining both the amount and composition of the DOM released. In response to increasing CO2 in the atmosphere, climate change is creating increasingly stressful conditions for phytoplankton in the surface ocean, including relatively warm water, low pH, low nutrient supply and high light. As ocean physics and chemistry change, it is hypothesized that a greater proportion of primary production will be released directly by phytoplankton into the water as DOM. Changes in the partitioning of primary production between the dissolved and particulate phases will have bottom-up effects on ecosystem structure and function. There is a need for research to determine how these changes affect the fate of organic matter in the ocean, particularly the efficiency of the biological carbon pump.  相似文献   

2.
As agents of mortality, viruses and nanoflagellates impact on picoplankton populations. We examined the differences in interactions between these compartments in two French Atlantic bays. Microbes, considered here as central actors of the planktonic food web, were first monitored seasonally in Arcachon (2005) and Marennes‐Oléron (2006) bays. Their dynamics were evaluated to categorize trophic periods using the models of Legendre and Rassoulzadegan as a reference framework. Microbial interactions were then compared through 48 h batch culture experiments performed during the phytoplankton spring bloom, identified as herbivorous in Marennes and multivorous in Arcachon. Marennes was spatially homogeneous compared with Arcachon. The former was potentially more productive, featuring a large number of heterotrophic pathways, while autotrophic mechanisms dominated in Arcachon. A link was found between viruses and phytoplankton in Marennes, suggesting a role of virus in the regulation of autotroph biomass. Moreover, the virus–bacteria relation was weaker in Marennes, with a bacterial lysis potential of 2.6% compared with 39% in Arcachon. The batch experiments (based on size‐fractionation and viral enrichment) revealed different microbial interactions that corresponded to the spring‐bloom trophic interactions in each bay. In Arcachon, where there is a multivorous web, flagellate predation and viral lysis acted in an opposite way on picophytoplankton. When together they both reduced viral production. Conversely, in Marennes (herbivorous web), flagellates and viruses together increased viral production. Differences in the composition of the bacterial community composition explained the combined flagellate‐virus effects on viral production in the two bays.  相似文献   

3.
Research on microbial loop organisms, heterotrophic bacteria and phagotrophic protists, has been stimulated in large measure by Pomeroy's seminal paper published in BioScience in 1974. We now know that a significant fate of bacterioplankton production is grazing by < 20-µm-sized flagellates. By selectively grazing larger, more rapidly growing and dividing cells in the bacterioplankton assemblage, bacterivores may be directly cropping bacterial production rather than simply the standing stock of bacterial cells. Protistan herbivory, however, is likely to be a more significant pathway of carbon flow in pelagic food webs than is bacterivory. Herbivores include both < 20-µm flagellates as well as > 20-µm ciliates and heterotrophic dinoflagellates in the microzooplankton. Protists can grow as fast as, or faster than their phytoplankton prey. Phototrophic cells grazed by protists range from bacterial-sized prochlorophytes to large diatom chains (which are preyed upon by extracellularly-feeding dinoflagellates). Recent estimates of microzooplankton herbivory in various parts of the sea suggest that protists routinely consume from 25 to 100% of daily phytoplankton production, even in diatom-dominated upwelling blooms. Phagotrophic protists should be viewed as a dominant biotic control of both bacteria and of phytoplankton in the sea.  相似文献   

4.
Natural phytoplankton populations have been grown in outdoor continuous cultures at three dilution rates (D = 0.5, 0.25, and 0.1 · day?1) under nitrogen (N) or silicon (Si) limitation and two light intensities. At a high specific nutrient flux (high dilution rate) under N limitation an assemblage of primarily small, fast growing centric diatoms such as Skeletonema costatum (Grev.) Cleve and Chaetoceros spp. dominated with a low percentage of flagellates. At a low specific nutrient flux, a mixture of larger, slower growing centric diatoms, small flagellates, and pennate diatoms was obtained. Similar trends were observed under silicate limitation. Decreasing the light intensity at the lowest dilution rate selected for an assemblage similar to that observed at the high dilution rate and high light intensity.The results of these competition experiments suggest that specific nutrient flux (dilution rate) is an important factor in determining between group dominance (e.g., centric and pennate diatoms and small flagellates). Successful competitors representing broad phytoplankton groups can be arranged along a resource gradient of specific nutrient flux (dilution rate), with groups such as centric and pennate diatoms, represented as high and medium flux species, respectively.  相似文献   

5.
Lindén  Eveliina  Kuosa  Harri 《Hydrobiologia》2004,514(1-3):73-78

The aim of this study was to determine the effects of pelagic mysids (Mysis mixta and M. relicta) on the biomass and size-structure of the phytoplankton community during the period following the spring bloom. Mysids excreted phosphate (4.5 ± 0.7 nmol ind−1 h−1) and ammonium (123.6 ± 31.6 and 45.0 ± 3.2 nmol ind−1 h−1) and increased the total chlorophyll-a concentration of phytoplankton slightly. However, the presence of mysids affected different size-classes of phytoplankton differently. Mysids mainly grazed on large-sized (>10 μm) phytoplankton cells. Small-sized (<10 μm) algal cells avoided grazing, gained a competitive advantage and were able to utilize the nutrients excreted by mysids. According to this study, both top-down and bottom-up mechanisms simultaneously mould the structure of the phytoplankton community. A large zooplankton biomass might promote the increase of small flagellates by a combination of repleting nutrient stores, selective grazing on large algal cells and heavy predation on protozoa which, consequently, might have a cascading effect on the most favoured protozoan food source, small flagellates.

  相似文献   

6.
Some aspects of the seasonal distribution of flagellates in mountain lakes   总被引:2,自引:2,他引:0  
E. Rott 《Hydrobiologia》1988,161(1):159-170
In a larger regional survey in Tyrol, phytoplankton species composition and biovolume of mid-altitude and high-mountain lakes was studied. Results from eight lakes showed that flagellates (mainly Chrysophyceae, Dinophyceae, and Cryptophyceae) are important components of the phytoplankton.In the mid-altitude lakes a spring and an autumn maximum of Chrysophyceae as well as a summer maximum of large dinoflagellates are observed, whereas Cryptophyceae and Dinophyceae show irregular distributions. In the high-mountain lakes the seasonal variations of phytoplankton, including flagellates, are limited by the long duration of the winter situation. However similar sequences of phytoplankton assemblages as in the midaltitude lakes can be observed. Flagellates in high-mountain lakes are important to sustain phytoplankton standing crop under the winter snow and ice cover.In order to show similarities and differences of high-mountain and mid-altitude lakes, vertical profiles of phytoplankton from three lakes and seasonal patterns of Gymnodinium uberrimum from two lakes are compared. In addition the patterns of cryptomonads differing in their ecological requirements (Cryptomonas spp. and Rhodomonas minuta) are shown for a meromictic mid-altitude lake.  相似文献   

7.
Pelagic marine viruses have been shown to cause significant mortality of heterotrophic bacteria, cyanobacteria, and phytoplankton. It was previously demonstrated, in nearshore California waters, that viruses contributed to up to 50% of bacterial mortality, comparable to protists. However, in less productive waters, rates of virus production and removal and estimates of virus-mediated bacterial mortality have been difficult to determine. We have measured rates of virus production and removal, in nearshore and offshore California waters, by using fluorescently labeled viruses (FLV) as tracers. Our approach is mathematically similar to the isotope dilution technique, employed in the past to simultaneously measure the release and uptake of ammonia and amino acids. The results indicated overall virus removal rates in the dark ranging from 1.8 to 6.2% h(-1) and production rates in the dark ranging from 1.9 to 6.1% h(-1), corresponding to turnover times of virus populations of 1 to 2 days, even in oligotrophic offshore waters. Virus removal rates determined by the FLV tracer method were compared to rates of virus degradation, determined at the same locations by radiolabeling methods, and were similar even though the current FLV method is suitable for only dark incubations. Our results support previous findings that virus impacts on bacterial populations may be more important in some environments and less so in others. This new method can be used to determine rates of virus degradation, production, and turnover in eutrophic, mesotrophic, and oligotrophic waters and will provide important inputs for future investigations of microbial food webs.  相似文献   

8.
An assembly intermediate of a small, non-enveloped RNA virus has been discovered that exhibits striking differences from the mature virion. Virus-like particles (VLPs) of Nudaurelia capensis omega virus (NomegaV), a T=4 icosahedral virus infecting Lepidoptera insects, were produced in insect cells using a baculovirus vector expressing the coat protein. A procapsid form was discovered when NomegaV VLPs were purified at neutral pH conditions. These VLPs were fragile and did not undergo the autoproteolytic maturation that occurs in the infectious virus. Electron cryo-microscopy (cryoEM) and image analysis showed that, compared with the native virion, the VLPs were 16% larger in diameter, more rounded, porous, and contained an additional internal domain. Upon lowering the pH to 5.0, the VLP capsids became structurally indistinguishable from the authentic virion and the subunits autoproteolyzed. The NomegaV protein subunit coordinates, which were previously determined crystallographically, were modelled into the 28 A resolution cryoEM map of the procapsid. The resulting pseudo-atomic model of the NomegaV procapsid demonstrated the large rearrangements in quaternary and tertiary structure needed for the maturation of the VLPs and presumably of the virus. Based on this model, we propose that electrostatically driven rearrangements of interior helical regions are responsible for the large conformational change. These results are surprising because large structural rearrangements have not been found in the maturation of any other small RNA viruses. However, similarities of this conformational change to the maturational processes of more complex DNA viruses (e.g. bacteriophages and herpesvirus) and to the swelling of simple plant viruses suggest that structural changes in icosahedral viruses, which are integral to their function, have similar strategies and perhaps mechanisms.  相似文献   

9.
The small average cell size of in situ bacterioplankton, relative to cultured cells, has been suggested to be at least partly a result of selection of larger-sized cells by bacterivorous protozoa. In this study, we determined the relative rates of uptake of fluorescence-labeled bacteria (FLB), of various cell sizes and cell types, by natural assemblages of flagellates and ciliates in estuarine water. Calculated clearance rates of bacterivorous flagellates had a highly significant, positive relationship with size of FLB, over a range of average biovolume of FLB of 0.03 to 0.08 microns3. Bacterial cell type or cell shape per se did not appear to affect flagellate clearance rates. The dominant size classes of flagellates which ingested all types of FLB were 3- to 4-microns cells. Ciliates also showed a general preference for larger-sized bacteria. However, ciliates ingested a gram-positive enteric bacterium and a marine bacterial isolate at higher rates than they did a similarly sized, gram-negative enteric bacterium or natural bacterioplankton, respectively. From the results of an experiment designed to test whether the addition of a preferentially grazed bacterial strain stimulated clearance rates of natural bacterioplankton FLB by the ciliates, we hypothesized that measured differences in rates of FLB uptake were due instead to differences in effective retention of bacteria by the ciliates. In general, clearance rates for different FLB varied by a factor of 2 to 4. Selective grazing by protozoa of larger bacterioplankton cells, which are generally the cells actively growing or dividing, may in part explain the small average cell size, low frequency of dividing cells, and low growth rates generally observed for assemblages of suspended bacteria.  相似文献   

10.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

11.
Pelagic marine viruses have been shown to cause significant mortality of heterotrophic bacteria, cyanobacteria, and phytoplankton. It was previously demonstrated, in nearshore California waters, that viruses contributed to up to 50% of bacterial mortality, comparable to protists. However, in less productive waters, rates of virus production and removal and estimates of virus-mediated bacterial mortality have been difficult to determine. We have measured rates of virus production and removal, in nearshore and offshore California waters, by using fluorescently labeled viruses (FLV) as tracers. Our approach is mathematically similar to the isotope dilution technique, employed in the past to simultaneously measure the release and uptake of ammonia and amino acids. The results indicated overall virus removal rates in the dark ranging from 1.8 to 6.2% h−1 and production rates in the dark ranging from 1.9 to 6.1% h−1, corresponding to turnover times of virus populations of 1 to 2 days, even in oligotrophic offshore waters. Virus removal rates determined by the FLV tracer method were compared to rates of virus degradation, determined at the same locations by radiolabeling methods, and were similar even though the current FLV method is suitable for only dark incubations. Our results support previous findings that virus impacts on bacterial populations may be more important in some environments and less so in others. This new method can be used to determine rates of virus degradation, production, and turnover in eutrophic, mesotrophic, and oligotrophic waters and will provide important inputs for future investigations of microbial food webs.  相似文献   

12.
The vernal successions of phytoplankton, heterotrophic nanoflagellates (HNF) and viruses in temperate lakes result in alternating dominance of top-down and bottom-up factors on the bacterial community. This may lead to asynchronous blooms of bacteria with different life strategies and affect the channelling of particular components of the dissolved organic matter (DOM) through microbial food webs. We followed the dynamics of several bacterial populations and of other components of the microbial food web throughout the spring phytoplankton bloom period in a pre-alpine lake, and we assessed bacterial uptake patterns of two constituents of the labile DOM pool (N-acetyl-glucosamine [NAG] and leucine). There was a clear genotypic shift within the bacterial assemblage, from fast growing Cytophaga-Flavobacteria (CF) affiliated with Fluviicola and from Betaproteobacteria (BET) of the Limnohabitans cluster to more grazing resistant AcI Actinobacteria (ACT) and to filamentous morphotypes. This was paralleled by successive blooms of viruses and HNF. We also noted the transient rise of other CF (related to Cyclobacteriaceae and Sphingobacteriaceae) that are not detected by fluorescence in situ hybridization with the general CF probe. Both, the average uptake rates of leucine and the fractions of leucine incorporating bacteria were approximately five to sixfold higher than of NAG. However, the composition of the NAG-active community was much more prone to genotypic successions, in particular of bacteria with different life strategies: While 'opportunistically' growing BET and CF dominated NAG uptake in the initial period ruled by bottom-up factors, ACT constituted the major fraction of NAG active cells during the subsequent phase of high predation pressure. This indicates that some ACT could profit from a substrate that might in parts have originated from the grazing of protists on their bacterial competitors.  相似文献   

13.
Grazing by heterotrophic nanoflagellates on bacteria and phytoplankton was studied in a laboratory experiment, using a natural pelagic community originating from the Tvärminne sea area off the southern coast of Finland. Water was prescreened to remove larger grazers. Four experimental treatments were used: light and dark, with and without added nutrients. The growth of the large heterotrophic flagellates was stimulated by increased production of < 3 m phytoplankton. Clearance rates for heterotrophic nanoflagellates were estimated and were found to be within the range of previously reported values.  相似文献   

14.
Phytoplankton need multiple resources to grow and reproduce (such as nitrogen, phosphorus, and iron), but the receptors through which they acquire resources are, in many cases, the same channels through which viruses attack. Therefore, phytoplankton can face a bottom-up vs. top-down tradeoff in receptor allocation: Optimize resource uptake or minimize virus attack? We investigate this top-down vs. bottom-up tradeoff using an evolutionary ecology model of multiple essential resources, specialist viruses that attack through the resource receptors, and a phytoplankton population that can evolve to alter the fraction of receptors used for each resource/virus type. Without viruses present the singular continuously stable strategy is to allocate receptors such that resources are co-limiting, which also minimizes the equilibrium concentrations of both resources. Only one virus type can be present at equilibrium (because phytoplankton, in this model, are a single resource for viruses), and when a virus type is present, it controls the equilibrium phytoplankton population size. Despite this top-down control on equilibrium densities, bottom-up control determines the evolutionary outcome. Regardless of which virus type is present, the allocation strategy that yields co-limitation between the two resources is continuously stable. This is true even when the virus type attacking through the limiting resource channel is present, even though selection for co-limitation in this case decreases the equilibrium phytoplankton population and does not decrease the equilibrium concentration of the limiting resource. Therefore, although moving toward co-limitation and decreasing the equilibrium concentration of the limiting resource often co-occur in models, it is co-limitation, and not necessarily the lowest equilibrium concentration of the limiting resource, that is the result of selection. This result adds to the growing body of literature suggesting that co-limitation at equilibrium is a winning strategy.  相似文献   

15.
AN ELECTRON MICROSCOPE STUDY OF THE DEVELOPMENT OF SV40 VIRUS   总被引:23,自引:2,他引:21       下载免费PDF全文
Kidney cells, predominantly from Cercopithecus monkeys but also from baboons, were infected in vitro with the SV40 virus. The infectious cycle was studied with the electron microscope by means of thin sections of cells fixed from 3 hours up to 11 days after infection. The frequency of virus formation and various nuclear and cytoplasmic lesions in relation to the infection are described. The virus particles appear in the nucleus in close contact with the chromatin. In a small number of cells they have been observed as early as 10 to 12 hours after infection, but most often they appear 24 to 48 hours afterward. Their mean diameter is 33 mµ. They have no membrane and are frequently arranged as crystal-like structures. In addition to the appearance of virus, one observes various lesions in the nucleoplasm and particularly in the nucleolus, which shows an early hypertrophy and produces unusual, dense condensations in contact with the nucleolonema. The importance of these nucleolar lesions and the relationship between the SV40 virus and the polyoma, common wart, and Shope papilloma viruses are discussed.  相似文献   

16.
Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis. We predicted that species forming large conspecific groups, that share their range with more heterospecifics (i.e., sympatry), and with mating systems characterized by high contact rates (polygynandry: multi-male/multi-female), would host higher viral richness than species with small group sizes, lower sympatry, or low contact-rate mating systems (polygyny: single male/multi-female). Consistent with our hypothesis and previous research, viral richness was positively correlated with conspecific group size although the relationship plateaued at group sizes of approximately several hundred thousand bats. This pattern supports epidemiological theory that, up to a point, larger groups have higher contact rates, greater likelihood of acquiring and transmitting viruses, and ultimately greater potential for viral diversification. However, contrary to our hypothesis, there was no effect of sympatry on viral richness and no difference in viral richness between mating systems. We also found no residual effect of host phylogeny on viral richness, suggesting that closely related species do not necessarily host similar numbers of viruses. Our results support the contact-rate hypothesis that intra-specific viral transmission can enhance viral diversification within species and highlight the influence of host group size on the potential of viruses to propagate within host populations.  相似文献   

17.
1. Field data from five unproductive Swedish lakes were used to investigate the occurrence of mixotrophic flagellates in relation to bacterioplankton, autotrophic phytoplankton, heterotrophic flagellates and abiotic environmental factors. Three different sources of data were used: (i) a 3‐year study (1995–97) of the humic Lake Örträsket, (ii) seasonal measurements from five lakes with widely varying dissolved organic carbon (DOC) concentrations, and (iii) whole lake enrichment experiments with inorganic nutrients and organic carbon. 2. Mixotrophic flagellates usually dominated over autotrophic phytoplankton in Lake Örträsket in early summer, when both bacterial production and light levels were high. Comparative data from the five lakes demonstrated that the ratio between the biomasses of mixotrophic flagellates and autotrophic phytoplankton (the M/A‐ratio) was positively correlated to bacterioplankton production, but not to the light regime. Whole lake carbon addition (white sugar) increased bacterial biomass, and production, reduced the biomass of autotrophs by a factor of 16, and increased the M/A‐ratio from 0.03 to 3.4. Collectively, the results indicate that the dominance of mixotrophs among phytoplankton was positively related to bacterioplankton production. 3. Whole lake fertilisation with nitrogen (N) and phosphorus (P) demonstrated that the obligate autotrophic phytoplankton was limited by N. N‐addition increased the biomass of the autotrophic phytoplankton but had no effect on mixotrophic flagellates or bacteria, and the M/A‐ratio decreased from 1.2 to 0.6 after N‐enrichment. Therefore, we suggest that bacteria under natural conditions, by utilising allochthonous DOC as an energy and carbon source, are able to outcompete autotrophs for available inorganic nutrients. Consequently, mixotrophic flagellates can become the dominant phytoplankters when phagotrophy permits them to use nutrients stored in bacterial biomass. 4. In Lake Örträsket, the biomass of mixotrophs was usually higher than the biomass of heterotrophs during the summer. This dominance could not be explained by higher grazing rates among the mixotrophs. Instead, ratios between mixotrophic and heterotrophic biomass (the M/H‐ratio) were positively related to light availability. Therefore, we suggest that photosynthesis can enable mixotrophic flagellates to outcompete heterotrophic flagellates.  相似文献   

18.
The genomic sequences of several RNA plant viruses including cucumber mosaic virus, brome mosaic virus, alfalfa mosaic virus and tobacco mosaic virus have become available recently. The former two viruses are icosahedral while the latter two are bullet and rod shaped, respectively in particle morphology. The non-structural 3a proteins of cucumber mosaic virus and brome mosaic virus have an amino acid sequence homology of 35% and hence are evolutionarily related. In contrast, the coat proteins exhibit little homology, although the circular dichroism spectrum of these viruses are similar. The non-coding regions of the genome also exhibit variable but extensive homology. Comparison of the brome mosaic virus and alfalfa mosaic virus sequences reveals that they are probably related although with a much larger evolutionary distance. The polypeptide folds of the coat protein of three biologically distinct isometric plant viruses, tomato Bushy stunt virus, southern bean mosaic virus and satellite tobacco necrosis virus have been shown to display a striking resemblance. All of them consist of a topologically similar 8-standard β-Barrel. The implications of these studies to the understanding of the evolution of plant viruses will be discussed.  相似文献   

19.
Chronic tonsillar diseases are an important health problem, leading to large numbers of surgical procedures worldwide. Little is known about pathogenesis of these diseases. In order to investigate the role of respiratory viruses in chronic adenotonsillar diseases, we developed a cross-sectional study to determine the rates of viral detections of common respiratory viruses detected by TaqMan real time PCR (qPCR) in nasopharyngeal secretions, tonsillar tissues and peripheral blood from 121 children with chronic tonsillar diseases, without symptoms of acute respiratory infections. At least one respiratory virus was detected in 97.5% of patients. The viral co-infection rate was 69.5%. The most frequently detected viruses were human adenovirus in 47.1%, human enterovirus in 40.5%, human rhinovirus in 38%, human bocavirus in 29.8%, human metapneumovirus in 17.4% and human respiratory syncytial virus in 15.7%. Results of qPCR varied widely between sample sites: human adenovirus, human bocavirus and human enterovirus were predominantly detected in tissues, while human rhinovirus was more frequently detected in secretions. Rates of virus detection were remarkably high in tonsil tissues: over 85% in adenoids and close to 70% in palatine tonsils. In addition, overall virus detection rates were higher in more hypertrophic than in smaller adenoids (p = 0.05), and in the particular case of human enteroviruses, they were detected more frequently (p = 0.05) in larger palatine tonsils than in smaller ones. While persistence/latency of DNA viruses in tonsillar tissues has been documented, such is not the case of RNA viruses. Respiratory viruses are highly prevalent in adenoids and palatine tonsils of patients with chronic tonsillar diseases, and persistence of these viruses in tonsils may stimulate chronic inflammation and play a role in the pathogenesis of these diseases.  相似文献   

20.
Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号