首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Invasion and intra-erythrocytic growth of two strains of Plasmodium berghei (ANKA and K173) were studied under different in vitro conditions. Some important limiting factors for the mass cultivation of this rodent malaria parasite were reconsidered. Parasites of both strains developed normally from ringforms into mature schizonts in RPMI1640 supplemented with Fetal Calf Serum (FCS). At a temperature of 37 degrees C the duration of the schizogonic cycle was comparable to that of the same parasites developing under in vivo conditions. At 27 degrees C, however, the asexual cycle took 60-72 h. In medium supplemented with mouse serum instead of FCS the growth of the parasites was severely inhibited. Parasites of both strains showed a strict preference for reticulocytes. Red blood cells from rats, mice and hamsters were readily invaded by merozoites from both strains. Erythrocytes from rabbits and guinea pigs were resistant to invasion by P. berghei. It is concluded that host cell specificity technically limits the possibilities for mass cultivation of P. berghei. The validity of recent publications, describing alternative culture systems for this rodent parasite, is discussed.  相似文献   

2.
Seven chemotherapeutic agents (dimetridazole, metronidazole, pyrimethamine, albendazole, fenbendazole, mebendazole and magnesium sulfate) were examined for growth inhibition on the cultivation of Spironucleus vortens. Dimetridazole and metronidazole were effective in inhibiting the parasite's growth. At concentrations of 1 microgram ml-1 or higher, both dramatically decreased numbers of parasites. At 24 h exposure, 33% of parasites were inhibited when exposed to dimetridazole or metronidazole at concentrations of 2 and 4 micrograms ml-1, respectively. Dimetridazole at 4 micrograms ml-1 or higher concentrations decreased the number of organisms to 50% or less after 48 h exposure. During the same period of time, the numbers of parasites decreased to 50% or less when exposed to metronidazole at 6 micrograms ml-1 or higher. Pyrimethamine at concentrations of 1 to 10 micrograms ml-1 was not effective in inhibiting the parasite's growth. Albendazole and fenbendazole at concentrations of 0.1 and 0.5 microgram ml-1 were similar in inhibiting the growth of the organism. Both compounds suppressed parasite growth at concentrations of 1.0 microgram ml-1 or higher after 24 h exposure. Mebendazole inhibited the parasite's growth at concentrations of 0.5 microgram ml-1 or higher. At 72 h exposure, 45 to 50% of the parasites were inhibited when exposed to mebendazole at concentrations higher than 0.5 microgram ml-1. Magnesium sulfate at concentrations of 70 mg ml-1 or higher also suppressed the growth of parasites after 24 h exposure. These results indicate that dimetridazole, metronidazole and mebendazole are the most effective chemotherapeutic agents in vitro at inhibiting the growth of S. vortens.  相似文献   

3.
The objective of the experiment was to use starch processing waste as an alternative growth medium for cultivation of mycelia of the mushroom Phellinus linteus and to find an optimum condition under solid-state cultivation. Response surface analysis along with a central composite design was successfully applied to approximate the simultaneous effects of the substrate concentration (16-36 g l(-1)), pH (4.5-6.5), and temperature (25-35 degrees C) on the mycelial growth rate. In the model, pH and temperature significantly affected the mycelial growth but substrate concentration did not. The optimal substrate concentration, pH, and temperature for maximizing growth rate of P. linteus mycelia were found to be 16.5 g l(-1), pH 6.0, and 29.7 degrees C, respectively. Subsequent verification of these levels agreed with model predictions and the maximum mycelial growth rate at these conditions was 6.1 +/- 0.8 mm day(-1). Therefore, the results of the experiments suggest that starch processing waste could be utilized as a growth substrate for the cultivation of the mushroom mycelia of P. linteus, enhancing the usefulness of this byproduct of the starch manufacturing industry. This approach is likely to be useful for establishing similar parameters for the cultivation of other fungi.  相似文献   

4.
The effects of culture conditions and competitive cultivation with bacteria on mycelial growth, metabolite profile, and antibacterial activity of the marine-derived fungus Arthrinium c.f. saccharicola were investigated. The fungus grew faster at 30°C, at pH 6.5 and in freshwater medium, while exhibited higher antibacterial activity at 25°C, at pH 4.5, 5.5, and 7.5, and in 34 ppt seawater medium. The fungus grew faster in a high-nitrogen medium that contained 0.5% peptone and/or 0.5% yeast extract, while exhibiting higher bioactivity in a high-carbon medium that contained 2% glucose. The fungal growth was inhibited when it was co-cultured with six bacterial species, particularly the bacterium Pseudoalteromonas piscida. The addition of a cell free culture broth of this bacterium significantly increased the bioactivity of the fungus. Metabolite profiles of the fungus revealed by gas chromatography (GC)-mass spectrometry showed clear difference among different treatments, and the change of relative area of three peaks in GC profile followed a similar trend with the bioactivity variation of fungal extracts. Our results showed clear differences in the optimal conditions for achieving maximal mycelial growth and bioactivity of the fungus, which is important for the further study on the mass cultivation and bioactive compounds isolation from this fungus.  相似文献   

5.
The influence of growth parameters on the fermentative production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi was studied. The bacteriocin production was greatly affected by carbon and nitrogen sources. Strain A164 produced at least 4-fold greater bacteriocin in M17 broth supplemented with lactose than other carbon sources. The amount of 3% yeast extract was found to be the optimal organic nitrogen source. While the maximum biomass was obtained at 37 degrees C, the optimal temperature for the bacteriocin production was 30 degrees C. The bacteriocin production was also affected by pH of the culture broth. The optimal pH for growth and bacteriocin production was 6.0. Although the cell growth at pH 6.0 was nearly the same level at pH 5.5 and 6.5, the greater bacteriocin activity was observed at pH 6.0. Exponential growth took place only during an initial period of the cultivation, and then linear growth was observed. Linear growth rates increased from 0.160 g(DCW) x l(-1) x h(-1) to 0.245 g(DCW) x l(-1) x h(-1) with increases in lactose concentrations from 0.5 to 3.0%. Maximum biomass was also increased from 1.88 g(DCW) x l(-1) to 4.29 g(DCW) x l(-1). However, increase in lactose concentration did not prolong the active growth phase. After 20 h cultivation, cell growth stopped regardless of lactose concentration. Production of the bacteriocin showed primary metabolic kinetics. However, bacteriocin yield based on cell mass increased greatly during the late growth phase. A maximum activity of 131x10(3) AU x ml(-1) was obtained at early stationary growth phase (20 h) during the batch fermentation in M17L broth (3.0% lactose) at 30 degrees C and pH 6.0.  相似文献   

6.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

7.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

8.
Optimum conditions were determined for the growth of Burkholderia pseudomallei in natural soils or waters. It grows better in paddy soil, crop-covered and fallow field than in fresh and salty water. Although the optimal temperature and pH for the growth were 37 or 42 degrees C, and 6.5 or 7.5 in an environmental-mimicking soil medium, this bacterium can still grow at 4 degrees C, which was suggested to be related with the occurrence of melioidosis in some cold areas. In soil media with water content < 15. B. pseudomallei did not grow until 60 d of incubation, suggesting that water contents of soils in which it dwelled would be one important factor in determining the growth rate.  相似文献   

9.
After phagocytosis by mammalian macrophages, promastigote forms of Leishmania parasites settle inside intracellular parasitophorous vacuoles (PVs) in which they transform into amastigote forms and replicate. Here, using a variant of the ‘inverted emulsion’ method, we succeeded in encapsulating living L. amazonensis parasites in giant artificial liposomes that serve as model PVs. We were able to control the size of liposomes, the pH and the composition of their internal volume, and the number of internalized parasites per liposome. L. amazonensis promastigotes encapsulated in liposomes filled with RPMI-Dextran solution at pH 7.5 or 6.5 survived up to 96 h at 24°C. At 37°C and pH 5.5, parasites survived 48h. This method paves the way to identifying certain effectors secreted by the parasite and to unraveling specific mechanisms of fusion between the PV and intracellular vesicles of the host cell. This method will also facilitate the study of the temporal evolution of biophysical properties of the PV during its maturation.  相似文献   

10.
AIMS: To study the influence of pH, temperature and culture medium on the growth and bacteriocin production by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328. METHODS AND RESULTS: The study was performed using a complete factorial experimental design. Lactobacillus salivarius was cultivated in LAPTg and MRS broths, adjusted to specific initial pH, and at different temperatures of incubation. The growth, which was evaluated by the Gompertz model, was higher in MRS broth than in LAPTg broth. The initial pH of the culture medium and the temperature had a dramatic effect on the production of bacteriocin. The optimal conditions for bacteriocin production were different to those for optimal growth. The decrease in the pH of the culture medium was parallel to the growth; pH had similar final values in both the MRS and the LAPTg broths. CONCLUSIONS: The optimal growth conditions were recorded in MRS broth, with an initial pH of 6.5 and a temperature of 37 degrees C. The maximum bacteriocin activity was obtained in LAPTg after 6 h at 37 degrees C, and at an initial pH of 6.5 or 8.0. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of a complete factorial design, and the evaluation of the growth parameters through the Gompertz model, enabled a rapid and simultaneous exploration of the influence of pH, temperature and growth medium on both growth and bacteriocin production by vaginal Lact. salivarius CRL 1328.  相似文献   

11.
The synthetic chemostat model (SCM), originally developed to describe nonstationary growth under widely varying concentrations of the limiting substrate, was modified to account for the effects of nontrophic factors such as temperature and pH. The bacterium Geobacillus uralicus, isolated from an ultradeep well, was grown at temperatures ranging from 40 to 75 degrees C and at pH varying from 5 to 9. The biomass kinetics was reasonably well described by the SCM, including the phase of growth deceleration observed in the first hours after a change in the cultivation temperature. In an early stage of batch growth in a neutral or alkalescent medium, bacterial cells showed reversible attachment to the glass surface of the fermentation vessel. The temperature dependence of the maximum specific growth rate (micron) was fitted using the equation micron = Aexp(lambda T)/[1 + expB[1-C/(T + 273)]], where A, lambda, B, and C are constants. The maximum specific growth rate of 2.7 h-1 (generation time, 15.4 min) was attained on a complex nutrient medium (peptone and yeast extract) at 66.5 degrees C and pH 7.5. On a synthetic mineral medium with glucose, the specific growth rate declined to 1.2 h-1 and the optimal temperature for growth decreased to 62.3 degrees C.  相似文献   

12.
A Pichia pastoris system was used to express a single-chain antibody (scFv) targeted against Mamestra configurata (bertha armyworm) serpins. To improve scFv production we examined parameters such as proteinase activity, temperature, cell density, osmotic stress, medium composition, pH, and reiterative induction. P. pastoris was found to express several proteases; however, adjustment of medium pH to limit their activity did not correlate with increased scFv recovery. Induction medium pH values of 6.5-8.0 were most conducive to scFv production, despite significant differences in cell growth rates. Increasing inoculum density limited growth potential but gave rise to higher levels of scFv production. Three factors, medium composition, pre-induction osmotic stress, and temperature, had the greatest effects on protein production. Supplementation of the induction medium with arganine, casamino acids, or EDTA increased scFv production several fold, as did cultivation under osmotic stress conditions during pre-induction biomass accumulation. Incubation at 15 versus 30 degrees C extended the period whereby cells were capable of producing scFv from 1 to 7 days. Under optimal conditions, yeast cultures yielded 25 mg/L of functional scFv and could be subject to five reiterative inductions.  相似文献   

13.
We investigated the optimal culture conditions for Cryptosporidium muris in a human stomach adenocarcinoma (AGS) cell line by determining the effects of medium pH and of selected supplements on the development of C. muris. The optimum pH of the culture medium required for the development of C. muris was determined to be 6.6. The number of parasites significantly increased during cultivation for 72 hr (p < 0.05) at this level. On the other hand, numbers decreased linearly after 24 hr of incubation at pH 7.5. When cultured in different concentrations of serum, C. muris in media containing 5% FBS induced 4-7 times more parasites than in 1% or 10% serum. Of the six medium supplements examined, only 1 mM pyruvate enhanced the number of C. muris in vitro. Transmission electron microscopic observation showed the developmental stages of C. muris in the cytoplasm of the cells, not in an extracytoplasmic location. The growth of C. muris in AGS cells provides a means of investigating its biological characteristics and of testing its response to therapeutic agents. However, a more optimized culture system is needed for the recovery of oocysts on a large scale in vitro.  相似文献   

14.
The effects of temperature, light, and water activity (aw) on the growth and fumitremorgin production of a heat-resistant mold, Neosartorya fischeri, cultured on Czapek Yeast Autolysate agar (CYA) were studied for incubation periods of up to 74 days. Colonies were examined visually, and extracts of mycelia and CYA on which the mold was cultured were analyzed for mycotoxin content by high-performance liquid chromatography. Growth always resulted in the production of the tremorgenic mycotoxins verruculogen and fumitremorgins A and C. The optimum temperatures for the production of verruculogen and fumitremorgins A and C on CYA at pH 7.0 were 25, 30, and 37 degrees C, respectively. The production of fumitremorgin C by N. fischeri has not been previously reported. Fumitremorgin production was retarded at 15 degrees C, but an extension of the incubation period resulted in concentrations approaching those observed at 25 degrees C. Light clearly enhanced fumitremorgin production on CYA (pH 7.0, 25 degrees C), but not as dramatically as did the addition of glucose, fructose, or sucrose to CYA growth medium (pH 3.5, 25 degrees C). Growth and fumitremorgin production was greatest at aw of 0.980 on CYA supplemented with glucose or fructose and at aw of 0.990 on CYA supplemented with sucrose. Growth and fumitremorgin production were observed at aw as low as 0.925 on glucose-supplemented CYA but not at aw lower than 0.970 on CYA supplemented with sucrose. Verruculogen was produced in the highest amount on all test media, followed by fumitremorgin A and fumitremorgin C.  相似文献   

15.
Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing L-glutamate, we observed formation of L-pyroglutamic acid (PGA). PGA formed spontaneously from L-glutamate under culture conditions (78 degrees C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of L-glutamate or L-aspartate to the medium. PGA was also produced from the L-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78 degrees C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues of L-glutamate, such as L-methionine sulfoxide, glutaric acid, succinic acid, and L-glutamic acid gamma-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues, N-acetyl-L-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of L-glutamate with N-acetyl-L-glutamate in the medium resulted in increased cell density.  相似文献   

16.
AIMS: This work aimed to optimize the culture conditions for production of a novel and potent anti-tubercular alkaloid, hirsutellone A, by the saprophytic soil fungus Trichoderma gelatinosum BCC 7579. METHODS AND RESULTS: The fungus was initially cultured in shake flasks at 25 degrees C in the potato dextrose broth (PDB) supplemented with various carbon and nitrogen sources and mineral salts to select suitable medium for mycelial growth and hirsutellone A production. Cultivation conditions were further optimized by adjusting initial pH and changing temperature levels to maximize the production of hirsutellone A. The optimal condition that increased the production of hirsutellone A from 19.04 mg l(-1), obtained from basal condition, to 610.55 mg l(-1) and reduced the cultivation time from 40 to 6 days was to cultivate in a shaker at 200 rev min(-1) at 25 degrees C in PDB plus 20 g l(-1) soluble starch, 10 g l(-1) peptone and 2.5% (v/v) salt solution with initial pH of 7. Production of hirsutellone A in larger-scale using a 5-l batch fermenter was also completed yielding 958 mg l(-1) of hirsutellone A within 6 days. CONCLUSIONS: The suitable culture conditions for hirsutellone A production by T. gelatinosum BCC 7579 was the cultivation in 5-l fermenter at 25 degrees C in PDB plus 20 g l(-1) soluble starch, 10 g l(-1) peptone and 2.5% (v/v) salt solution with an initial pH of 7. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of hirsutellone A in a fermenter to obtain a high yield and reduce an incubation period will become very useful in anti-tubercular drug development process in the future.  相似文献   

17.
pH值对沼液培养的普通小球藻生长及油含量积累的影响   总被引:3,自引:0,他引:3  
王翠  李环  王钦琪  韦萍 《生物工程学报》2010,26(8):1074-1079
以50%的沼液为普通小球藻的全营养培养基,考察培养基的起始pH值对小球藻生长及油脂含量的影响,普通小球藻对不同初始pH的沼液中氮、磷的去除情况。设定了2组实验,一组只调节初始接种培养液的pH,分别为6.0、6.5、7.0、7.5、8.0、8.5;另一组将培养液pH分别固定在6.0、6.5、7.0、7.5、8.0、8.5,pH用稀HCl和NaOH进行调节。研究发现在pH 6.5和pH 7.0的偏酸环境有利于小球藻生长,而pH在7.0~8.5的偏碱性条件下有利于小球藻油脂的积累,因此综合小球藻生长和油脂积累2个因素,得到最适合小球藻生长和油脂积累的pH为7.0。培养结束后沼液中氮磷的去除率分别达到了95%和97%,沼液中的总氮由原来的134.91 mg/L降至4.86 mg/L,总磷由10.19 mg/L降到0.32 mg/L。  相似文献   

18.
The fate of 125I-labeled heparin binding growth factor I (125I-HBGF-I) after binding to its cell surface receptor has been studied using murine lung capillary endothelial cells (LEII). Binding of 125I-HBGF-I to its receptor at 4 degrees C shows pH dependence with optimal binding at pH 6.5-7.5. The majority (approximately 80%) of 125I-HBGF-I bound to cells at 4 degrees C can be removed by washing with low pH medium, but rapidly becomes acid resistant upon shifting cells to 37 degrees C, with 50% of the 125I-HBGF-I becoming acid resistant after 20 minutes. Electrophoretic analysis of internalized 125I-HBGF-I shows that degradation begins approximately 2 hours after internalization with the appearance of two major labeled fragments of Mr 15,000 and Mr 10,000. Degradation of internalized 125I-HBGF-I is inhibited by the lysosomotropic agent chloroquine. These data suggest that cell-associated 125I-HBGF-I is rapidly internalized and directed to a lysosomal cellular compartment where it is slowly degraded.  相似文献   

19.
When exposed to normal human or guinea pig sera, promastigotes of Leishmania enriettii and L. tropica activate the complement cascade by the alternative pathway and fix C3 on their surfaces. In high (25%) serum concentrations, the result of complement activation is parasite lysis. At lower concentrations (4%), complement fixation results in enhanced parasite binding and uptake into murine peritoneal macrophages. Parasites are lysed in normal guinea pig, C4-deficient guinea pig, normal human, and C2-deficient human sera when they are incubated at 37 degrees C for 30 min. Fetal calf and normal mouse sera are poorly lytic. Lysis requires Mg++ but not Ca++, is mediated by heat labile (56 degrees C, 30 min) component(s), and does not occur when the incubations are maintained at 4 degrees C. Guinea pig serum preadsorbed with promastigotes of L. tropica in EDTA at 4 degrees C for 30 min is fully lytic. Immunofluorescence studies with anti-C3 antibodies show that under these conditions C3 is deposited on the surface of the parasite. The serum-dependent binding of parasites to macrophages is also mediated by heat-labile, nonadsorbable factor(s) present in normal guinea pig and mouse sera, as well as C2-deficient and C4-deficient sera. The serum-dependent macrophage recognition mechanism is trypsin sensitive but relatively resistant to chymotrypsin. Parasites but not macrophages can be presensitized at room temperature with low levels (8%) of serum to enhance their binding to macrophages. Presensitization does not occur at 4 degrees C. These results show that Leishmania promastigotes of several species can fix complement by activating the alternative complement pathway. This may then result either in parasite lysis or in an accelerated uptake of the parasite into phagocytic cells. In vivo, the biologic outcome of infection may reflect a balance between extracellular lysis and enhanced uptake into phagocytic cells.  相似文献   

20.
Mirror carp were infected with Ichthyophthirius multifiliis (Fouquet) under standardized conditions. The size and number of parasites at selected sites on the body were recorded during the course of the infection. Initial exposure to 40 mature parasites resulted in a mild infection with 100% recovery after 18 days. Recovered fish did not appear to be carriers of the parasite. Exposure to 400 parasites resulted in 100% mortality between 22–25 days. The growth rate of the parasite was linear. Parasites were more numerous in the dorsal surface of the fish than in the lateral or ventral surface. The increase in parasite numbers during the disease was greater in the gills than in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号