首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Carbohydrate research》1986,154(1):217-228
Heparin trisaccharides having the sequence O-(2-amino-2-deoxy-α-d-glucopyranosyl)-(1→4)-O-α-l-idopyranosyluronic acid-(1→4)-2,5-anhydro-d-[1-3H]mannitol have been prepared, as substrate models for studying sulfatases of heparan sulfate catabolism, by α-l-iduronidase cleavage of previously reported heparin tetrasaccharides, with additional chemical and enzymic modification as required. Three series are described, including isomeric sulfate esters of that trisaccharide with no N-substituent, with N-acetyl substitution, and with N-sulfate substitution. New features of the substrate specificity of the hydrolases used, including iduronate sulfatase, α-l-iduronidase, glucosamine 6-sulfate sulfatase, and heparin sulfamidase, were observed, and simple procedures for partial purification of these hydrolases are reported. The structures assigned to the trisaccharides are supported by the mode of preparation, reactions, regularities in electrophoretic behavior, and identities of the products of deamination.  相似文献   

2.
Biosynthesis of heparin. O-sulfation of the antithrombin-binding region   总被引:1,自引:0,他引:1  
The antithrombin-binding region in heparin is a pentasaccharide sequence with the predominant structure GlcNAc(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-IdoA -(2-OSO3)-GlcNSO3(6-OSO3) (where GlcA and IdoA represent D-glucuronic and L-iduronic acid, respectively), in which the 3-O-sulfate residue on the internal glucosaminyl unit is a marker group for this particular region of the polysaccharide molecule. A heparin octasaccharide which contained the above pentasaccharide sequence was N/O-desulfated and re-N-sulfated and was then incubated with adenosine 3'-phosphate 5'-phospho[35S]sulfate in the presence of a microsomal fraction from mouse mastocytoma tissue. Fractionation of the resulting 35S-labeled octasaccharide on antithrombin-Sepharose yielded a high affinity fraction that accounted for approximately 2% of the total incorporated label. Structural analysis of this fraction indicated that the internal glucosamine unit of the pentasaccharide sequence was 3-O-35S-sulfated, whereas both adjacent glucosamine units carried 6-O-[35S]sulfate groups. In contrast, the fractions with low affinity for antithrombin (approximately 98% of incorporated 35S) showed no consistent O-35S sulfation pattern and essentially lacked glucosaminyl 3-O-[35S]sulfate groups. It is suggested that the 3-O-sulfation reaction concludes the formation of the antithrombin-binding region. This proposal was corroborated in a similar experiment using a synthetic pentasaccharide with the structure GlcNSO3(6-OSO3)-GlcA-GlcNSO3(6-OSO3)-Id oA (2-OSO3)-GlcNSO3(6-OSO3) as sulfate acceptor. This molecule corresponds to a functional antithrombin-binding region but for the lack of a 3-O-sulfate group at the internal glucosamine unit. The 35S-labeled pentasaccharide recovered after incubation bound with high affinity to antithrombin-Sepharose and contained a 3-O-[35S]sulfate group at the internal glucosamine residue as the only detectable labeled component. The use of this pentasaccharide substrate along with the affinity matrix provides a highly specific assay for the 3-O-sulfotransferase.  相似文献   

3.
Oligosaccharides with different affinities for antithrombin were isolated following partial deaminative cleavage of pig mucosal heparin with nitrous acid. The smallest high-affinity component obtained was previously identified as an octasaccharide with the predominant structure: (Formula: see text). The interaction of this octasaccharide, and of deca- and dodecasaccharides containing the same octasaccharide sequence, with antithrombin was studied by spectroscopic techniques. The near-ultraviolet difference spectra, circular dichroism spectra, and fluorescence enhancements induced by adding these oligosaccharides to antithrombin differed only slightly from the corresponding parameters measured in the presence of undegraded high-affinity heparin. Moreover, the binding constants obtained for the oligosaccharides and for high-affinity heparin were similar (1.0-2.9 X 10(7) M-1 at I = 0.3). In contrast, two hexasaccharides corresponding to units 1-6 and 3-8, respectively, of the above sequence showed about a 1000-fold lower affinity for antithrombin, and also induced considerably different spectral perturbations in antithrombin. Since the 1-6 hexasaccharide contains a reducing-terminal anhydromannose residue instead of the N-sulfated glucosamine unit 6 of the intact sequence, these results strongly support our previous conclusion that the N-sulfate group at position 6 is essential to the interaction with antithrombin. The low affinity of the hexasaccharide 3-8 provides further evidence that a pentasaccharide sequence 2-6 constitutes the actual antithrombin-binding region in the heparin molecule. Structural analysis of the various oligosaccharides revealed natural variants with an N-sulfate group substituted for the N-acetyl group at position 2. The preponderance of N-acetyl over N-sulfate groups at this position may be rationalized in terms of the mechanism of heparin biosynthesis, assuming that the D-gluco configuration of unit 3 is an essential feature of the antithrombin-binding region.  相似文献   

4.
Mechanism of the anticoagulant action of heparin   总被引:20,自引:0,他引:20  
Summary The anticoagulant effect of heparin, a sulfated glycosaminoglycan produced by mast cells, requires the participation of the plasma protease inhibitor antithrombin, also called heparin cofactor. Antithrombin inhibits coagulation proteases by forming equimolar, stable complexes with the enzymes. The formation of these complexes involves the attack by the enzyme of a specific Arg-Ser bond in the carboxy-terminal region of the inhibitor. The complexes so formed are not dissociated by denaturing solvents, which indicates that a covalent bond may contribute to their stability. This bond may be an acyl bond between the active-site serine of the enzyme and the arginine of the cleaved reactive bond of the inhibitor. However, the native complexes dissociate slowly at near-neutral pH into free enzyme and a modified inhibitor, cleaved at the reactive bond. So, antithrombin apparently functions as a pseudo-substrate that traps the enzyme in a kinetically stable complex.The reactions between antithrombin and coagulation proteases are slow in the absence of heparin. However, optimal amounts of heparin accelerate these reactions up to 2 000-fold, thereby efficiently preventing the formation of fibrin in blood. The accelerating effect, and thus the anticoagulant activity, is shown by only about one-third of the molecules in all heparin preparations, while the remaining molecules are almost inactive. The highly active molecules bind tightly to antithrombin, i.e. with a binding constant of slightly below 108 M–1 at physiological ionic strength, while the relatively inactive molecules bind about a thousand-fold more weakly. The binding of the high-affinity heparin to antithrombin is accompanied by a conformational change in the inhibitor that is detectable by spectroscopic and kinetic methods. This conformational change follows an initial, weak binding of heparin to antithrombin and causes the tight interaction between polysaccharide and inhibitor that is prerequisite to heparin anticoagulant activity. It has also been postulated that the conformational change leads to a more favourable exposure of the reactive site of antithrombin, thereby allowing the rapid interaction with the proteases.Heparin also binds to the coagulation proteases. Recent studies indicate that this binding is weaker and less specific that the binding to antithrombin. Nevertheless, for some enzymes, thrombin, Factor IXa and Factor XIa, an interaction between heparin and the protease, in addition to that between the polysaccharide and antithrombin; apparently is involved in the accelerated inhibition of the enzymes. The effect of this interaction may be to approximate enzyme with inhibitor in an appropriate manner. However, the bulk of the evidence available indicates that binding of heparin to the protease alone cannot be responsible for the accelerating effect of the polysaccharide on the antithrombin-protease reaction.Heparin acts as a catalyst in the antithrombin-protease reaction, i.e. it accelerates the reaction in non-stoichiometric amounts and is not consumed during the reaction. This ability can be explained by heparin being released from the antithrombin-protease complex for renewed binding to antithrombin, once the complex has been formed. Such a decresed affinity of heparin for the antithrombin complex, compared to the affinity for antithrombin alone, has been demonstrated.The structure of the antithrombin-binding region in heparin has been investigated following the isolation of oligosaccharides with high affinity for antithrombin. The smallest such oligosaccharide, an octasaccharide, obtained after partial random depolymerization of heparin with nitrous acid, was found to contain a unique glucosamine-3-O-sulfate group, which could not be detected in other portions of the high affinity heparin molecule and which was absent in heparin with low affinity for antithrombin. The actual antithrombin-binding region within this octasaccharide molecule has been identified as a pentasaccharide sequence with he predominant structure: N-acetyl-D-glucosamine(6-O-SO3)D-glucoronic acidD-glucosamine(N-SO3;3,6-di-O-SO3)L-iduronic acid(2-O-SO3)D-glucosamine(N-SO3;6-O-SO3). In addition to the 3-O-sulfate group, both N-sulfate groups as well as the 6-O-sulfate group of the N-acetylated glucosamine unit appear to be essential for the interaction with antithrombin. The remarkably constant structure of this sequence, as compared to other regions of the heparin molecule, suggests a strictly regulated mechanism of biosynthesis.The ability of heparin to potentiate the inhibition of blood coagulation by antithrombin generally decreases with decreasing molecular weight of the polysaccharide. However, individual coagulation enzymes differ markedly with regard to this molecular-weight dependence. Oligosaccharides in the extreme low-molecular weight range, i.e. octa- to dodecasaccharides, with high affinity for antithrombin have high anti-Factor Xa-activity but are virtually unable to potentiate the inhibition of thrombin. Furthermore, such oligosaccharides are ineffective in preventing experimentally induced venous thrombosis in rabbits. Slightly larger oligosaccharides, containing 16 to 18 monosaccharide residues, show significant anti-thrombin as well as antithrombotic activities, yet have little effect on overall blood coagulation. These findings indicate that the affinity of a heparin fragment for antithrombin is not in itself a measure of the ability to prevent venous thrombo-genesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential as an antithrombotic agent.The biological role of the interaction between heparin and antithrombin is unclear. In addition to a possible function in the regulation of hemostasis, endogenous heparin may serve as a regulator of extravascular serine proteinases. Mouse peritoneal macrophages have been found to synthesize all the enzymes that constitute the extrinsic pathway of coagulation. Moreover, tissue thromboplastin is produced by these cells in response to a functional interaction with activated T-lymphocytes. The inhibition of this extravascular coagulation system by heparin, released from mast cells, may be potentially important in modulating inflammatory reactions.  相似文献   

5.
Heparin was converted by treatment with nitrous acid primarily into sulfated disaccharides. The mixture of disaccharides was reduced with sodium boro[3H]hydride and the disaccharides were purified by preparative paper electrophoresis and paper chromatography. Four disaccharides were obtained. On the basis of their paper electrophoretic mobilities and the products formed at intermediate stages of their acid hydrolysis, the disaccharides were identified as 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-2,5-anhydro-d-mannitol, 4-O-(α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, and 4-O-(β-d-glucopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol. The purified disaccharides were used as standards in the development of a high-performance liquid chromatography procedure for their separation and quantitation on a Partisil-10 SAX anion-exchange column. The three monosulfated disaccharides were resolved by isocratic elution with 40 mm KH2PO4. The KH2PO4 concentration was tehn increased to 400 mm to elute the disulfated disaccharide. Column effluents were collected in 12-ml fractions, and the recovery of each 3H-labeled product was determined by scintillation counting. When sodium boro-[3H]hydride with a specific activity of 315 mCi/mmol was used in the reduction of the heparin deamination products, the disaccharides gave 28,500 cpm/nmol in the effluent peaks. Quantitative recoveries of the 3H-disaccharides were obtained. It was demonstrated that the method developed using the purified disaccharides gave reproducible and quantitative results in direct assays of aliquots of boro[3H]hydride-reduced heparin deamination mixtures.  相似文献   

6.
1. Pancreatic islet homogenates catalyze, in a Ca2+-dependent fashion, the incorporation of [2,5-3H]histamine, [1,4-14C]putrescine, [1,2-3H]agmatine, [14C]methylamine, L-[U-14C]lysine in N,N-dimethylcasein. 2. Using [2,5-3H]histamine as the amine donor, the Km for Ca2+ and histamine amounts to 90μM and 0.7 mM, respectively. 3. The incorporation of [2,5-3H]histamine into N,N-dimethylcasein is inhibited by monodansylcadaverine, N-p-tosyl glycine, bacitracin and methylamine, the relative extent of inhibition depending on the respective concentrations of Ca2+, inhibitor and amine donor. 4. Bacitracin and methylamine, but not N-p-tosyl glycine, cause a dose-related inhibition of glucose-stimulated insulin release. 5. It is concluded that, in pancreatic islets, the Ca2+-responsive transglutaminase activity plays a critical role in the process of glucose-induced insulin release.  相似文献   

7.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radio-active monosaccharides. promnase digenst of the virus chromatographer on Bio-Gel P 6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson J. and Clamp J.R. (1971) Biochem. J. 123, 739–745) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Wether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggast that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

8.
Summary. We have analysed the incorporation of [3H]sucrose and [3H]mannitol in pulvinar motor cells of Robinia pseudoacacia L. during phytochrome-mediated nyctinastic closure. Pairs of leaflets, excised 2 h after the beginning of the photoperiod, were fed with 50 mM [3H]sucrose or [3H]mannitol, irradiated with red (15 min) or far-red (5 min) light and placed in the dark for 2–3 h. Label uptake was measured in whole pulvini by liquid scintillation counting. The distribution of labelling in pulvinar sections was assessed by both light and electron microautoradiography. [3H]Sucrose uptake was twice that of [3H]mannitol incorporation in both red- and far-red-irradiated pulvini. In the autoradiographs, [3H]sucrose and [3H]mannitol labelling was localised in the area from the vascular bundle to the epidermis, mainly in vacuoles, cytoplasm, and cell walls. Extensor and flexor protoplasts displayed a different distribution of [3H]sucrose after red and far-red irradiation. Far-red light drastically reduced the [3H]sucrose incorporation in extensor protoplasts and caused a slight increase in internal flexor protoplasts. After red light treatment, no differences in [3H]sucrose labelling were found between extensor and flexor protoplasts. Our results indicate a phytochrome control of sucrose distribution in cortical motor cells and seem to rule out the possibility of sucrose acting as an osmoticum. Correspondence and reprints: Unidad de Fisiología Vegetal, Facultad de Biología, Universidad de Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain.  相似文献   

9.
Abstract: Intrastriatal injections of kainic acid (KA) were utilized to investigate the cellular localization of postsynaptic dopamine (DA) metabolism by type A and B monoamine oxidase (MAO) in rat striatum. At 2 days postinjection, maximal degeneration of cholinergic and γ-aminobutyric acid (GABA)ergic neurons was observed and found to be associated with a significant decrease in both type A and B MAO activity. However, over the next 8-day period, when only the process of gliosis appeared to be occurring, a selective return to control of type B MAO activity was seen. When the metabolism of [3H]DA (10?7 M) was examined in 8-day KA-lesioned rat striatal slices, an increase in [3H]dihydroxyphenylacetic acid (DOPAC) and [3H]homovanillic acid (HVA) formation was observed. The KA-induced elevation of [3H]DOPAC formation (but not [3H]HVA) was abolished by the DA neuronal uptake inhibitor nomifensine. This is consistent with earlier findings suggesting that HVA is formed exclusively within sites external to DA neurons. Experiments with clorgyline and/or deprenyl revealed that the relative roles of type A and B MAO in striatal DA deamination remained unchanged following KA (90% deamination by type A MAO) even though total deamination was substantially enhanced. At high concentrations of [3H]DA (10?5 M), deamination by type B MAO could be increased to 30% of the total MAO activity; however, this was observed in both control and KA-lesioned striata. These results suggest that KA-sensitive neurons contain type A and/or type B MAO. Moreover, whereas these neurons may metabolize DA, a major portion of postsynaptic DA deamination appears to occur within glial sites of rat striatal tissue. Furthermore, glial cells would appear to contain functionally important quantities of both type A and B MAO.  相似文献   

10.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

11.
Glycosaminoglycans with unique sulfation patterns have been identified in different species of ascidians (sea squirts), a group of marine invertebrates of the Phylum Chordata, sub-phylum Tunicata (or Urochordata). Oversulfated dermatan sulfate composed of [4-α-L-IdoA-(2-O-SO3)?1 → 3-β-D-GalNAc(4-OSO3)?1]n repeating disaccharide units is found in the extracellular matrix of several organs, where it seems to interact with collagen fibers. This dermatan sulfate co-localizes with a decorin-like protein, as indicated by immunohistochemical analysis. Low sulfated heparin/heparan sulfate-like glycans composed mainly of [4-α-L-IdoA-(2-OSO3)?1 → 4-α-D-GlcN(SO3)?1 (6-O-SO3)?1]n and [4-α-L-IdoA-(2-O-SO3)?1 → 4-α-D-GlcN(SO3)?1]n have also been described in ascidians. These heparin-like glycans occur in intracellular granules of oocyte assessory cells, named test cells, in circulating basophil-like cells in the hemolymph, and at the basement membrane of different ascidian organs. In this review, we present an overview of the structure, distribution, extracellular and intracellular localization of the sulfated glycosaminoglycans in different species and tissues of ascidians. Considering the phylogenetic position of the subphylum Tunicata in the phylum Chordata, a careful analysis of these data can reveal important information about how these glycans evolved from invertebrate to vertebrate animals.  相似文献   

12.
Gibberellin A5 (GA5), a native GA of immature seeds of Pharbitis nil, was fed to Pharbitis nil cell suspension cultures as [C-l, 3H] GA5 (3.1 Ci/mmol), and its metabolism over a 48 hr period was investigated. Radioactivity in free GA metabolites was 13.1%, with 79.9% in GA glucosyl conjugate-like metabolites. Only 7.0% of the radioactivity remained as [3H] GA5. Tentative identifications were based on comparison with retention times of authentic free GAs and/or glucosyl conjugates after sequential chromatography on Si gel partition column → gradient-eluted C18 HPLC-radiocounting (RC) → isocratic-eluted C18 HPLC-RC, and showed that [3H] GA5 was converted to [3H] GA1 (2%), [3H] GA3 (4%), [3H] GA6 (2%), [3H] GA22 (1%) and their glucosyl conjugates, and also to [3H] GA8 glucoside, and [3H] GA5 glucosyl conjugates. The major conjugate-like substances were [3H] GA1 and [3H] GA3 glucosyl esters, at 15% and 34%, respectively, of the total extractable radioactivity.  相似文献   

13.
Abstract— The alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) is a peptide-coupling agent that is being used to inactivate irreversibly α2-adrenoceptors and other receptors. The aim of the present study was to assess the in vitro and in vivo effects of EEDQ on the newly discovered brain l2-imidazoline sites, located mainly in mitochondria. Preincubation of rat cortical membranes with EEDQ (10?8-10?5M) markedly decreased (20–90%) the specific binding of the selective antagonist [3H]R821002 to α2-adrenoceptors without affecting that of [3H]idazoxan (in the presence of adrenaline) to l2-imidazoline sites. In EEDQ-pretreated membranes (10?5M, 30 min at 25°c), the density of l2-imidazoline sites (Bmax= 80 ± 4 fmol/mg of protein) was not different from that determined in untreated membranes in the presence of 10?6M (-)-adrenaline (Bmax= 83 ± 4 fmol/mg of protein), and both densities were lower (24%, p < 0.05) than the total native density of [3H]idazoxan binding sites (Bmax= 107 ± 6 fmol/mg of protein) (l2-imidazoline sites plus a2-adrenoceptors). Treatment of rats with an optimal dose of EEDQ (1.6 mg/kg, i.p., for 2 h to 30 days) reduced maximally at 6 h (by 95 ± 1%) the specific binding of [3H]-R821002 to α2-adrenoceptors, but also the binding of [3H]idazoxan to l2-imidazoline sites (by 44 ± 5%). Pretreatment with yohimbine (10 mg/kg, i.p.) fully protected against EEDQ-induced α2-adrenoceptor inactivation. In contrast, pretreatment with cirazoline (1 mg/kg, i.p.), did not protect against EEDQ-induced inactivation of l2-imidazoline sites. Treatment with EEDQ (1.6 mg/kg, i.p., for 6 h) did not alter the density of brain monoamine oxidase-A sites labeled by [3H]Ro 41–1049 or that of monoamine oxidase-B sites labeled by [3H]Ro 19–6327 (lazabemide), two relevant mitochondrial markers. Competition experiments with cirazoline against the specific binding of [3H]idazoxan to l2-imidazoline sites demonstrated the presence of the expected two affinity states for the drug in EEDQ-pretreated membranes as well as in rats treated with EEDQ. The results indicate that EEDQ in vitro is a useful tool for quantitating l2-imidazoline sites when using [3H]-imidazoline ligands that also recognize α2-adrenoceptors. In vivo, however, EEDQ is also able to inactivate partially brain l2-imidazoline sites probably by an indirect mechanism. Key Words: Brain l2-imidazoline sites—[3H]-Idazoxan—α2-Adrenoceptors—[3H] R821002—N -Ethoxycarbonyl-2-ethoxy-li2-dihydroquinoline—Monoamine oxidase-A—[3H]Ro 41–1049—Monoamine oxidase-B—[3H]Ro 19–6327.  相似文献   

14.
Abstract: Primary cultures of chromaffin cells from bovine adrenal medulla were used to evaluate the ability of several opiates to reduce the release of catecholamines induced by stimulation of nicotinic receptors. Etorphine, β-endorphin, Met-enkephalin[Arg6,Phe7], and the synthetic peptide [d -Ala2,Me-Phe4,Met(O)s-ol]enkephalin inhibited the acetylcholine-induced release of catecholamines with an IC30 varying from 10?7 to 1 × 10?6M. The effect was stereospecific because levorphanol (IC30= 7.5 × 10?7M) was approximately two orders of magnitude more potent than dextrorphan. Morphine (μ-receptor agonist), [d -Ala2, d -Leu5]enkephalin (δ-receptor agonist), ethylketazocine (k -receptor agonist), and N-allylnormetazocine (σ-receptor agonist) were at least 100–1000 times less potent than etorphine. Diprenorphine (IC50= 5 × 10?7M) and naloxone (IC50= 10?6M) antagonized the effect of etorphine. High-affinity, saturable, and stereospecific binding sites for [3H]etorphine, [3H]dihydromorphine, [3H-d -Ala2,d -Leu5]enkephalin, [3H]ethylketazocine, and for [3H]N-allylnormetazocine, [3H]diprenorphine, and [3H]naloxone were detected in chromaffin cell membranes and in membranes obtained from adrenal medulla homogenates. However, the number of binding sites for [3H]etorphine and [3H]diprenorphine was 10–70 times higher than the number of sites measured with the other 3H ligands. The rank order of potency of these compounds for the displacement of [3H]etorphine binding correlates (r = 0.90) with the rank order of potency of the same compounds for the inhibition of acetylcholine-induced catecholamine release. These data suggest that a stereoselective opiate receptor (different from the classic μ-, δ-, k -, or σ-receptor) with high affinity for etorphine, diprenorphine, β-endorphin, and Met-enkephalin[Arg6,Phe7] modulates the function of the nicotinic receptor in adrenal chromaffin cells.  相似文献   

15.
Competition by Estrogens for Catecholamine Receptor Binding In Vitro   总被引:2,自引:2,他引:0  
Abstract: We have examined the ability of various steroids to compete for high-affinity binding of 3H-labeled ligands to catecholamine receptors in membranes prepared from rat cerebral cortex, striatum, and anterior pituitary. Ligands employed were: [3H]WB4101, [3H]prazosin, [3H]yohimbine, and [3H]clonidine (alpha-noradrenergic); [3H]dihydroalprenolol (beta-noradrenergic); [3H]spiperone and [3H]ADTN (dopaminergic). Only the 17β estrogens were effective and only binding of [3H]spiperone and [3H]ADTN in striatum and [3H]WB4101 and [3H]prazosin in cerebral cortex was reduced. Thus putative dopaminergic and alpha1-noradrenergic sites alone appear to recognize estrogens. A slight competitive effect on [3H]spiperone binding to anterior pituitary membranes was also observed. Among the 17β estrogens tested, the most effective in all cases was the catechol estrogen 2-hydroxyestradiol (2-OHE2). The ability of 2-OHE2 (IC50= 20–30 μM) to inhibit ligand binding to alpha1 receptors was comparable to that of norepinephrine (IC50= 10–20 μM), whereas for dopamine receptors in striatum and pituitary 2-OHE2 was an order of magnitude less effective than dopamine (IC30= 12 μM) in reducing binding of 3H ligands. Estradiol-17β and 2-hydroxyestrone were also able to inhibit binding, but the order of steroid potency was different for alpha1 and dopaminergic receptors. Progesterone, testosterone, and corticosterone were without effect in all cases. These results show that there is specificity of steroid interactions with catecholamine receptors in the brain, both in terms of steroid structure and receptor type. The possible relevance of these interactions to neuroendocrine function is discussed.  相似文献   

16.
Abstract: Histamine stimulation of bovine adrenal medullary cells rapidly activated phospholipase C. [3H]Inositol 1,4,5-trisphosphate [[3H]Ins(1,4,5)P3] levels were transiently increased (200% of basal values between 1 and 5 s) before declining to a new steady-state level of ~140% of basal values. [3H]Inositol 1,4-bisphosphate [[3H]Ins(1,4)P2] content increased to a maximal and maintained level of 250% of basal values after 1 s, whereas levels of [3H]inositol 1,3,4-trisphosphate [[3H]-Ins(1,3,4)P3], [3H]inositol 1,3-bisphosphate, and [3H]-inositol 4-monophosphate ([3H]Ins4P) increased more slowly. The rapid responses were not reduced by the removal of extracellular Ca2+, but they were no longer sustained over time. The turnover rates of selected inositol phosphate isomers have been estimated in the intact cell. [3H]Ins(1,4,5)P3 was rapidly metabolized (t1/2 of 11 s), whereas the other isomers were metabolized more slowly, with t1/2 values of 113, 133, 104, and 66 s for [3H]Ins(1,3,4)P3, [3H]Ins(1,4)P2, an unresolved mixture of [3H]inositol 1- and 3-monophosphate ([3H]Ins1/3P), and [3H]Ins4P, respectively. The calculated turnover rate of [3H]Ins(1,4,5)P3 was sufficient to account for the turnover of the combination of both [3H]Ins(1,4)P2 and [3H]Ins(1,3,4)P3 but not that of [3H]Ins1/3P or [3H]Ins4P. These observations demonstrate that histamine stimulation of these cells results in a complex Ca2+-dependent and -independent response that may involve the hydrolysis of inositol phospholipids in addition to phosphatidylinositol 4,5-bisphosphate.  相似文献   

17.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   

18.
Abstract: [3H]Ryanodine binding to, as well as functions of, ryanodine receptor intracellular Ca2+ release channel complexes are modulated by several adenosine-based compounds. In this study, we determined the effects of endogenous compounds termed diadenosine polyphosphates (ApnAs; n = 2–6 phosphate groups) on [3H]ryanodine binding to membranes prepared from rat brain and skeletal and cardiac muscle. Under low ionic strength buffer conditions, [3H]ryanodine binding to brain membranes was significantly increased by 171% with 333 µMP1,P5-di(adenosine-5′) pentaphosphate (Ap5A) and by 209% with the same concentration of the metabolism-resistant ATP analogue βγ-methyleneadenosine 5′-triphosphate (AMP-PCP) compared with control values for [3H]ryanodine binding of 9.6 ± 1.8 fmol/mg of protein. Dose-related increases in [3H]ryanodine binding were observed for all five ApnAs tested [P1,P2-di(adenosine-5′) pyrophosphate (Ap2A), P1,P3-di(adenosine-5′) triphosphate (Ap3A), P1,P4-di(adenosine-5′) tetraphosphate (Ap4A), Ap5A, and P1,P6-di(adenosine-5′) hexaphosphate (Ap6A)] as well as AMP-PCP; oxidized salts of ApnAs stimulated [3H]ryanodine binding to a greater degree than did nonoxidized ApnAs. The apparent rank order for the capacity of these agents to increase [3H]-ryanodine binding was oxidized Ap4A = oxidized Ap5A > oxidized Ap3A > Ap6A > AMP-PCP > Ap5A > Ap2A. Addition of the approximate EC50 dose of oxidized Ap4A (37 µM) increased the affinity (KD) of ryanodine receptors from 34 ± 7 to 12 ± 2 nM; the apparent binding site density (Bmax) was not significantly different from control values of 107 ± 33 fmol/mg of protein. Increases in [3H]-ryanodine binding by either oxidized Ap4A or nonoxidized Ap5A were not further enhanced by coincubation with AMP-PCP, which suggests a similar site of action for the ApnAs and AMP-PCP. [3H]Ryanodine binding to skeletal and cardiac muscle membranes was enhanced by addition of oxidized Ap4A, Ap5A, and AMP-PCP. Oxidized Ap4A increased the specific binding by ninefold in skeletal muscle and by threefold in cardiac muscle. These results suggest that ApnAs, at physiologically relevant concentrations, may serve as endogenous modulators of ryanodine receptor-gated Ca2+ release channels.  相似文献   

19.
The influence of photoperiod on the metabolism of GA20 in Salix pentandra was studied by feeding [3H]-GA20 to seedlings which had been grown previously under long day (LD) or short day (SD) conditions. After 48 h in LD or SD, metabolites were separated on sequential, silica gel partition columns and reversed-phase C18 HPLC. The principal metabolite co-chromatographed with [3H]-GA1 and this conversion was confirmed by feeding [2H]-GA20, which was converted to [2H]-GA1 as identified by gas chromatography-selected ion monitoring. Chromatographic evidence also indicated the minor conversion of [3H]-GA20 to [3H]-GA8 (via [3H]-GA1) and trace conversion to [3H]-GA29 (GAs A1.8,20.29 are native in Salix). Ethyl acetate-insoluble [3H] metabolites were formed and could be cleaved by cellulase to release putative [3H]-GA20 and [3H]-GA1 suggesting the conversion to glucosyl conjugates of these GAs. Metabolism of [3H]-GA20 was slightly more rapid in plants previously grown under LD than SD, an effect which reflected the generally increased shoot growth under LD. However, altering the photoperiod after [3H]-GA20 addition had only a slight effect on the metabolism of [3H]-GA20 in Salix seedlings. This indicates that the conversion of GA20 to GA1 is not a controlling step in the photoperiodic regulation of growth cessation in Salix.  相似文献   

20.
[2H, 3H]Gibberellin A4 (GA4) or [2H, 3H] GA9 were applied to the shoot tips of seedlings of elongated internode (ein), a tall mutant of rapid cycling Brassica rapa. Following [2H]GA9 application, [2H]GA51, [2H]GA20 and [2H]GA4 were identified as products by GC-MS, while [2H]GA34 and [2H]GA1 were formed from [2H]GA4. Other isotopically labelled products, including abundant putative conjugates, were also produced, but were not identified. Thus, in B. rapa, GA1 biosynthesis involves the convergence of at least two metabolic pathways; it can be formed via GA4 or GA20, the latter of which can originate from GA9 or from GA19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号