首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
1.  The effect of transient forebrain ischemia on endothelin-1 (ET-1) and endothelin-3 (ET-3) production in the hippocampus of stroke-prone spontaneously hypertensive rats (SHRSPs) was investigated using immunohistochemical techniques.
2.  In SHRSPs subjected to 10-min bilateral carotid occlusion, neuronal degeneration in the CA1 pyramidal cell layer of the hippocampus was detectable at 4 days and remarkable at 7 days after reperfusion.
3.  Coinciding with neuronal degeneration, ET-1- and ET-3-like immunoreactivities were intense in the CA1 pyramidal-cell layer, the stratum lacunosum moleculare, and the CA4 subfield of the hippocampus. Almost all of the immunostained cells had morphological characteristics of astrocytes.
4.  The possibility that ET has a role in the development of neuronal cell death following transient forebrain ischemia warrants further attention.
  相似文献   

2.
The capacity of myelin basic protein or of poly-L-lysine to promote leakage of carboxyfluorescein from vesicles or the aggregation of vesicles was studied. The vesicles were composed of phosphatidylcholine as the sole or major lipid component. Addition of 10% sphingomyelin, 10% phosphatidylglycerol, 10% egg or bovine brain phosphatidylethanolamine, or 30% dodecanal had relatively little effect on the extent of carboxyfluorescein release in the presence of either myelin basic protein or poly-L-lysine. In contrast with these results, the extent of vesicle aggregation was very sensitive to lipid composition. Addition of 10% phosphatidylglycerol induced more aggregation than the other phospholipids tested. Admixing 10% of a partially degraded sample of bovine brain phosphatidylethanolamine also led to a large amount of aggregation induced by the myelin basic protein. This latter aggregation appeared more specific for the basic protein, as it occurred to a much smaller extent with poly-L-lysine. In general, the effects of the myelin basic protein on either carboxyfluorescein release or vesicle aggregation were similar to, although somewhat greater than, that of poly-L-lysine. The aggregation of vesicles containing degradation products of phosphatidylethanolamine can be ascribed largely to the presence of aliphatic aldehydes. The effect of aliphatic aldehydes was specific in that the aliphatic alcohol, hexadecanol, or the short-chain aldehydes, acetaldehyde or butyraldehyde, did not promote myelin basic protein-induced vesicle aggregation. In addition, poly-L-lysine was less effective than the basic protein in aggregating vesicles containing aliphatic aldehydes. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Althoughneuronal death following brain ischemia was originally considered to be due to an energy deficiency resulting from an impaired respiratory chain, the observation of delayed neuronal death indicated some other factor. It is believed that delayed neuronal death after transient forebrain ischemia appears as a result of release of glutamate, an excitatory amino acid. In the present study, transient ischemia for 20 minutes in a rat four-vessel occlusion model was induced, and serial changes in histology and N-methyl-d-asparate receptor (NMDA-R) binding were evaluated up to the chronic stage. Destruction of pyramidal cells and extensive astrocytic proliferation in the CA1 area of the hippocampus was completed by 10 days after cerebral ischemia followed by cerebral blood recirculation. However, the glutamate receptor subtype, NMDA-R, showed no change in all brain regions until after 10 days, but decreased in the hippocampus to 50% after 21 days despite no evidence of histological progression of neuronal death. The results show that the time course for appearance of light microscopic damage in the hippocampal region does not parallel that for depletion of NMDA-R binding sites.  相似文献   

4.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   

5.
Stroke-prone spontaneously hypertensive rats (SHRSP/Izm) develop severe hypertension, and more than 95% of them die of cerebral stroke. We showed the vulnerability of neuronal cells of SHRSP/Izm rats. Furthermore, we analyzed the characteristics of SHRSP/Izm astrocytes during a stroke. It is known that the proliferating ability of SHRSP/Izm astrocytes is significantly enhanced compared with those in the normotensive Wistar Kyoto rats (WKY/Izm) strain. Conversely, the ability of SHRSP/Izm astrocytes to form tight junctions (TJ) was attenuated compared with astrocytes from WKY/Izm rats. During the stress of hypoxia and reoxygenation (H/R), lactate production, an energy source for neuronal cells, decreased in SHRSP/Izm astrocytes in comparison with the WKY/Izm strain. Moreover, during H/R, SHRSP/Izm astrocytes decreased their production of glial cell line-derived neurotrophic factor (GDNF) in comparison with WKY/Izm astrocytes. Furthermore, SHRSP/Izm rats decreased production of l-serine, compared with WKY/Izm rats following nitric oxide (NO) stimulation. Additionally, in H/R, astrocytes of SHRSP/Izm rats expressed adhesion molecules such as VCAM-1 at higher levels.It is possible that all of these differences between SHRSP/Izm and WKY/Izm astrocytes are not associated with the neurological disorders in SHRSP/Izm. However, attenuated production of lactate and reduced GDNF production in astrocytes may reduce required energy levels and weaken the nutritional status of SHRSP/Ism neuronal cells. We suggest that the attenuation of astrocytes’ functions accelerates neuronal cell death during stroke, and may contribute to the development of strokes in SHRSP/Izm. In this review, we summarize the altered properties of SHRSP/Izm astrocytes during a stroke.  相似文献   

6.
7.
Sphingolipids play a key role in cells as structural components of membrane lipid bilayers and signaling molecules implicated in important physiological and pathological processes. Their metabolism is tightly regulated. Mechanisms controlling sphingolipid metabolism are far from being completely understood. However, they already reveal the integration of sphingolipids in the whole metabolic network as signaling devices that coordinate different metabolic pathways. A picture of sphingolipids integrated into metabolic networks might help to understand sphingolipid homeostasis. This review describes recent advances in the regulation of de novo sphingolipid synthesis with a focus on the bridges that exist with other metabolic pathways and the importance of this crosstalk in the control of sphingolipid homeostasis. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号