共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiating the mycelium of with blue light causes the photoreduction of a -type cytochrome. The action spectrum for the photoreduction of the cytochrome is similar to action spectra for the photoactivation of carotene synthesis and photoinhibition of the circadian rhythm of conidiation in . 相似文献
2.
The effect of riboflavin analogs on blue light responses in a riboflavin mutant of Neurospora crassa was studied. The analogs 1-deazariboflavin and roseoflavin, which have red-shifted absorption, acted as photoreceptors for the photosuppression and phase shifting of circadian conidiation by 540 nm light, but were ineffective as photoreceptors for the induction of carotenoid synthesis. These results provide addtional evidence implicating a flavin photoreceptor for at least two blue light responses of Neurospora. 相似文献
4.
We have assayed absorbance changes generated by blue light in plasma membranes, endoplasmic reticulum, and mitochondrial membranes from Neurospora crassa. Light minus dark difference spectra, obtained anaerobically in the presence of ethylenediaminetetraacetate, indicated that b-type cytochromes could be photoreduced in all three membranes. In plasma membranes, a b-type cytochrome with a distinct difference spectrum was photoreducible without addition of exogenous flavin. Addition of riboflavin greatly stimulated the photoreduction of cytochromes in endoplasmic reticulum and mitochondrial membranes. In its spectral characteristics the cytochrome on the endoplasmic reticulum resembled cytochrome b5 or nitrate reductase, while the cytochrome in mitochondrial membranes had the same spectrum as cytochrome b of the mitochondrial respiratory chain. Cytochromes in the three membrane fractions reacted differently to blue light in the presence of various inhibitors. Potassium azide inhibited reduction of plasma membrane cytochrome b, with 50% inhibition at 1.0 millimolar. The same concentration of azide stimulated photoreduction of cytochromes in both endoplasmic reticulum and mitochondria. Although photoreduction of cytochromes in all three membranes was inhibited by salicylhydroxamic acid, cytochromes in plasma membranes were more sensitive to this inhibitor than those in endoplasmic reticulum and mitochondria. Cells grown to induce nitrate reductase activity showed an elevated amount of blue light-reducible cytochrome b in the endoplasmic reticulum. 相似文献
8.
In Neurospora crassa, a circadian rhythm of conidiation (asexual spore formation) can be seen on the surface of agar media. This rhythm has a period of 22 hr in constant darkness (D/D). Under constant illumination (L/L), no rhythm is visible and cultures show constant conidiation. However, here we report that strains with a mutation in the vivid ( vvd) gene, previously shown to code for the photoreceptor involved in photo-adaptation, exhibit conidiation rhythms in L/L as well as in D/D. The period of the rhythm of vvd strains ranges between 6 and 21 hr in L/L, depending upon the intensity of the light, the carbon source, and the presence of other mutations. Temperature compensation of the period also depends on light intensity. Dark pulses given in L/L shift the phase of the rhythm. Shifts from L/L to D/D show unexpected after effects; i.e., the short period of a vvd strain in L/L gradually lengthens over 2–3 days in D/D. The rhythm in L/L requires the white collar ( wc-1) gene, but not the frequency ( frq) gene. FRQ protein shows no rhythm in L/L in a vvd strain. The conidiation rhythm in L/L in vvd is therefore driven by a FRQ-less oscillator (FLO). 相似文献
9.
为了全面了解蓝光受体信号转导组分及其调节机制的研究进展,着重地阐述了蓝光受体的信号转导组分中的Ca~(2 )、蛋白质的可逆磷酸化、阴离子通道和G蛋白,以及植物如何通过多条信号转导途径调节其形态和发育的变化以适应环境的变化等。 相似文献
11.
Summary Conidiation in Neurospora crassa has been studied in vivo by time-lapse microphotography and shown to be most generally (in aerial, dry conditions) a budding-fission process. Such a two-phase process is characterized by an initial basifugal budding of proconidial elements which are then secondarily separated as maturing conidia by interconidial septa. Dry macroconidia of Neurospora are thus blasto-arthrospores, i.e. blastospores basifugally budded on conidiophores and secondarily disarticulated from the proconidial chain as arthrosporal elements. Inception and median splitting of the interconidial septum have been electron microphotographed.In the vegetative hyphae, ethanol dehydrogenase has been cytochemically detected by oxidative assay and demonstrates a dense, uniform distribution of activity except at the hyphal tips. In the conidiating hyphae, the ethanol dehydro-genase becomes less dense in distribution, especially in the budding apices. Cytochrome oxidase activity, localized in the mitochondria, is confined in the subapical zone of vegetative hyphae while at the initiation of conidiation it becomes dispersed throughout the proconidial buds. 相似文献
12.
Plants and animals use day or night length for seasonal control of reproduction and other biological functions. Overwhelming evidence suggests that this photoperiodic mechanism relies on a functional circadian system. Recent progress has defined how flowering time in plants is regulated by photoperiodic control of output pathways, but the underlying mechanisms of photoperiodism remain to be described. The authors investigate photoperiodism in a genetic model system for circadian rhythms research, Neurospora crassa. They find that both propagation and reproduction respond systematically to photoperiod. Furthermore, a nonreproductive light-regulated function is also enhanced under certain photoperiodic conditions. All of these photoperiodic responses require a functional circadian clock, in that they are absent in a clock mutant. Night break experiments show that measuring night length is one of the mechanisms used for photoperiod assessment. This represents the first formal report of photoperiodism in the fungi. 相似文献
13.
Blue light is the primary entrainment signal for a number of developmental and morphological processes in the lower eucaryote Neurospora crassa. Blue light regulates photoactivation of carotenoid synthesis, conidiation, phototropism of perithecia and circadian rhythms. Changes in the electrical properties of the plasma membrane are one of the fastest responses to blue light irradiation. To enable patch-clamp studies on light-induced ion channel activity, the wall-less slime mutant was used. Patch-clamp experiments were complemented by non-invasive ion-selective measurements of light-induced ion fluxes of slime cells using the vibrating probe technique. Blue light usually caused a decrease in conductance within 2-5 minutes at both negative and positive voltages, and a negative shift in the reversal potential in whole-cell patch-clamp measurements. Both K+ and Cl- channels contribute to the inward and outward currents, based on the effects of TEA (10 mM) and DIDS (500 microM). However, the negative shift in the reversal potential indicates that under blue light the Cl- conductance becomes dominant in the electrical properties of the slime cells due to a decrease of K+ conductance. The ion-selective probe revealed that blue light induced the following changes in the net ion fluxes within 5 minutes: 1) decrease in H+ influx; 2) increase in K+ efflux; and 3) increase in Cl- influx. Ca2+ flux was unchanged. Therefore, blue light regulates an ensemble of transport processes: H+, Cl-, and K+ transport. 相似文献
16.
Rb + transport in low-K + cells of Neurospora crassa is biphasic, transport at millimolar Rb + being added to a transport process which saturates in the micromolar range. Both processes exhibit Michaelis-Menten kinetics, but in the micromolar phase the kinetic parameters depend on the K + content of the cell (the lower the K + content the lower the Km and the higher the Vmax). Normal-K + cells, suspended in a buffer with millimolar K +, do not present Rb + transport in the micromolar range. Millimolar transport in these cells presents kinetics which depend on the K + in buffer (the higher the K + the higher the Km), although the K + content of the cells is constant. Na + inhibits competitively Rb + transport in low-K + and normal-K + cells, but, even when the differences between the Rb +Km values are more than three orders of magnitude, the apparent dissociation constant for Na + is the same, and millimolar, in both cases. 相似文献
18.
Cell respiration in wild type and poky was studied as part of a long-term investigation of cyanide-resistant respiration in Neurospora. Respiration in wild type proceeds via a cytochrome chain which is similar to that of higher organisms; it is sensitive to antimycin A or cyanide. Poky, on the other hand, respires by means of two alternative oxidase systems. One of these is analogous to the wild-type cytochrome chain in that it can be inhibited by antimycin A or cyanide; this system accounts for as much as 15% of the respiration of poky f(-) and 34% of the respiration of poky f(+). The second oxidase system is unaffected by antimycin A or cyanide at concentrations which inhibit the cytochrome chain maximally. It can, however, be specifically inhibited by salicyl hydroxamic acid. The cyanide-resistant oxidase is not exclusive to poky, but is also present in small quantities in wild type grown under ordinary circumstances. These quantities may be greatly increased (as much as 20-fold) by growing wild type in the presence of antimycin A, cyanide, or chloramphenicol. 相似文献
19.
Summary Changes in the molecular weight of nascent DNA made after ultraviolet (UV) irradiation have been studied in the excision-defective Neurospora mutant uvs-2 using isotopic pulse labeling, alkaline gradient centrifugation and alkaline filter elution. Both the size of nascent DNA and the rate of incorporation of label into DNA was reduced by UV light in a dose dependent manner. However, this DNA repair mutant did recover the ability to synthesize control-like high molecular weight DNA 3 hours after UV treatment, although the rate of DNA synthesis remained depressed after the temporary block to elongation (or ligation) had been overcome. Photoreactivation partially eliminated the depression of DNA synthesis rate and UV light killing of cells, providing strong evidence that the effects on DNA synthesis and killing were caused by pyrimidine cyclobutane dimers. The caffeine inhibition repair studies performed were difficult to quantitate but did suggest either partial inhibition of a single repair pathway or alternate postreplication DNA repair pathways in Neurospora. No enhancement in killing was detected after UV irradiation when cells were grown on caffeine containing plates. 相似文献
20.
Secreted and constitutive intracellular proteases of differ with regard to inhibitor sensitivity, substrate specificity, isoelectric points and other properties. Upon the induction of protease secretion the enzymes released from the mycelium are formed as demonstrated by density labelling with D 2O. Vesicles which contain the constitutive intracellular proteases are, therefore, not involved in the secretion of proteases. 相似文献
|