首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.  相似文献   

2.
Overexpression of the adipocyte differentiation and determination factor-1 (ADD-1) or sterol regulatory element binding protein-1 (SREBP-1) induces the expression of numerous genes involved in lipid metabolism, including lipoprotein lipase (LPL). Therefore, we investigated whether LPL gene expression is controlled by changes in cellular cholesterol concentration and determined the molecular pathways involved. Cholesterol depletion of culture medium resulted in a significant induction of LPL mRNA in the 3T3-L1 preadipocyte cell line, whereas addition of cholesterol reduced LPL mRNA expression to basal levels. Similar to the expression of the endogenous LPL gene, the activity of the human LPL gene promoter was enhanced by cholesterol depletion in transient transfection assays, whereas addition of cholesterol caused a reversal of its induction. The effect of cholesterol depletion upon the human LPL gene promoter was mimicked by cotransfection of expression constructs encoding the nuclear form of SREBP-1a, -1c (also called ADD-1) and SREBP-2. Bioinformatic analysis demonstrated the presence of 3 potential sterol regulatory elements (SRE) and 3 ADD-1 binding sequences (ABS), also known as E-box motifs. Using a combination of in vitro protein-DNA binding assays and transient transfection assays of reporter constructs containing mutations in each individual site, a sequence element, termed LPL-SRE2 (SRE2), was shown to be the principal site conferring sterol responsiveness upon the LPL promoter. These data furthermore underscore the importance of SRE sites relative to E-boxes in the regulation of LPL gene expression by sterols and demonstrate that sterols contribute to the control of triglyceride metabolism via binding of SREBP to the LPL regulatory sequences.  相似文献   

3.
4.
5.
The peroxisomal ATP binding cassette (ABC) transporter adrenoleukodystrophy-related protein, encoded by ABCD2, displays functional redundancy with the X-linked adrenoleukodystrophy-associated protein, making ABCD2 up-regulation of therapeutic value. Cholesterol lowering activates human ABCD2 in cultured cells. To investigate in vivo regulation by sterols, we first characterized a sterol regulatory element (SRE) in the murine Abcd2 promoter that is directly bound by SRE-binding proteins (SREBPs). Intriguingly, this element overlaps with a direct repeat 4, which serves as binding site for liver X receptor (LXR)/retinoid X receptor heterodimers, suggesting novel cross-talk between SREBP and LXR/retinoid X receptor in gene regulation. Using fasting-refeeding and cholesterol loading, SREBP accessibility to the SRE/direct repeat 4 was tested. Results suggest that adipose Abcd2 is induced by SREBP1c, whereas hepatic Abcd2 expression is down-regulated by concurrent activation of LXRalpha and SREBP1c. In cell culture, SREBP1c-mediated Abcd2 induction is counteracted by ligand-activated LXRalpha. Finally, hepatic Abcd2 expression in LXRalpha,beta-deficient mice is inducible to levels vastly exceeding wild type. Together, we identify LXRalpha as negative modulator of Abcd2, acting through a novel regulatory mechanism involving overlapping SREBP and LXRalpha binding sites.  相似文献   

6.
7.
8.
ATP-binding cassette transporter A1 (ABCA1) is a pivotal regulator of cholesterol efflux from cells to apolipoproteins, whereas sterol-responsive element-binding protein 2 (SREBP2) is the key protein regulating cholesterol synthesis and uptake. We investigated the regulation of ABCA1 by SREBP2 in vascular endothelial cells (ECs). Our results showed that sterol depletion activated SREBP2 and increased its target, low density lipoprotein receptor mRNA, with a concurrent decrease in the ABCA1 mRNA. Transient transfection analysis revealed that sterol depletion decreased the ABCA1 promoter activity by 50%, but low density lipoprotein receptor promoter- and the sterol-responsive element-driven luciferase activities were increased. Overexpression of the N terminus of SREBP2 (SREBP2(N)), an active form of SREBP2, also inhibited the ABCA1 promoter activity. Functionally adenovirus-mediated SREBP2(N) expression increased cholesterol accumulation and decreased apoA-I-mediated cholesterol efflux. The conserved E-box motif was responsible for the SREBP2(N)-mediated inhibition since mutation of the E-box increased the basal activity of the ABCA1 promoter and abolished the inhibitory effect of SREBP2(N). Furthermore sterol depletion and SREBP2(N) overexpression induced the binding of SREBP2(N) to both consensus and ABCA1-specific E-box. Chromatin immunoprecipitation assay demonstrated that serum starvation enhanced the association of SREBP2 and the ABCA1 promoter in ECs. To correlate this mechanism pathophysiologically, we found that oscillatory flow caused the activation of SREBP2 and therefore attenuated ABCA1 promoter activity in ECs. Thus, this SREBP-regulated mechanism may control the efflux of cholesterol, which is a newly defined function of SREBP2 in ECs in addition to its role in cholesterol uptake and biosynthesis.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The Niemann-Pick C1 (NPC1) protein regulates the transport of cholesterol from late endosomes/lysosomes to other compartments responsible for maintaining intracellular cholesterol homeostasis. The present study examined the expression of the NPC1 gene and the distribution of the NPC1 protein that resulted from the transport of LDL-derived cholesterol through normal human fibroblasts. A key finding was that the transport of cholesterol from late endosomes/lysosomes to the sterol-regulatory pool at the endoplasmic reticulum, as determined by feedback inhibition of the sterol-regulatory element binding protein (SREBP) pathway, was associated with the downregulation of the NPC1 gene. Consistent with these results, fibroblasts incubated with LDL had decreased amounts of SREBP protein that interacted with sterol-regulatory element (SRE) sequences positioned within the NPC1 gene promoter region. Finally, partial colocalization of the NPC1 protein with late endosomes/lysosomes and distinct regions of the endoplasmic reticulum suggested that the NPC1 protein may facilitate the transport of cholesterol directly between these two compartments. Together, these results indicate that the transport of LDL-derived cholesterol from late endosomes/lysosomes to the sterol-regulatory pool, known to be regulated by the NPC1 protein, is responsible for promoting feedback inhibition of the SREBP pathway and downregulation of the NPC1 gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号