首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All living organisms utilize ribosomes to translate messenger RNA into proteins. Initiation of translation, the process of bringing together mRNA, initiator transfer RNA, and the ribosome, is therefore of critical importance to all living things. Two protein factors, IF1 (a/eIF1A) and IF2 (a/eIF5B), are conserved among all three kingdoms of life and have been called universal initiation factors (Roll-Mecak et al., 2001). Recent X-ray, NMR and cryo-EM structures of the universal factors, alone and in complex with eubacterial ribosomes, point to the structural homology among the initiation factors and initiation complexes. Taken together with genomic and functional evidence, the structural studies allow us to predict some features of eukaryotic and archaeal initiation complexes. Although initiation of translation in eukaryotes and archaea requires more initiation factors than in eubacteria we propose the existence of a common denominator initiation complex with structural and functional homology across all kingdoms of life.  相似文献   

2.
Li et al., (2006) have shown that TOR complex 1 in yeast binds directly to the rDNA promoter and thereby activates Pol I-dependent synthesis of 35S RNA. This is an important advance in the understanding of how ribosome biogenesis is regulated in response to environmental conditions.  相似文献   

3.
Structure-function relationship of Rous sarcoma virus leader RNA.   总被引:20,自引:4,他引:20       下载免费PDF全文
J L Darlix  M Zuker    P F Spahr 《Nucleic acids research》1982,10(17):5183-5196
Cells infected by RSV synthesize viral 35S RNA as well as subgenomic 28S and 22S RNAs coding for the Env and Src genes respectively. In addition, at least the 5' 101 nucleotides of the leader are also conserved and we have shown previously that this sequence contains a strong ribosome binding site (J.-L. Darlix et al., J. Virol. 29, 597). We now report the RNA sequence of Rous Sarcoma virus (RSV) leader RNA and propose a folding of this 5' untranslated region which brings the Cap, the initiation codon for Gag and the strong ribosome binding site close to each other. We also show that ribosomes protect a sequence just upstream from initiator Aug of Gag in vitro, and believed to interact with part of the strong ribosome binding site according to the folding proposed for the leader RNA.  相似文献   

4.
Dear Editor, In the nucleus of higher eukaryotes, chromatin occupies only a small proportion of the nuclear space, while many proteins and RNAs segregate into membrane-less nuclear bodies (NBs).These NBs follow a stochastic or ordered assembly model and constantly exchange components with the surrounding nucleoplasm (Jain et al., 2016).Typical NBs include nucleoli, nuclear speckles, paraspeckles, PML bodies, Cajal bodies, polycomb bodies and Sam68 bodies,which play critical roles in various biological processes such as ribosome assembly, RNA processing, and protein modification.The dysfunction of nuclear bodies may cause diseases, such as cancer (Li et al., 2019).  相似文献   

5.
Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50?years, and here we utilize a comparative analysis approach to relate the composition of ribosomal proteins (r-proteins) to their role in the assembly process. We computed the amino acid distributions for the 30S subunit r-protein sequences from 560 bacterial species and compared this composition to those of other house-keeping proteins from the same species. We found that r-proteins have a significantly higher content of positively charged residues (Lysine, K, and Arginine, R) than do nonribosomal proteins (10% for R and 11% for K in r-proteins, vs. 4.7% R and 5.9% K in non-ribosomal proteins), which is consistent with prior knowledge of net positive charges carried by r-proteins (Baker et al., 2001; Klein et al., 2004; Burton et al., 2012). Furthermore, these two residues are also highly represented at contact sites along the protein/RNA interface (contact enrichment factor (CEF)?>?1). These results provide further evidence of the importance of electrostatic interactions between the positively charged proteins and negatively charged ribosomal RNA (rRNA) during ribosome assembly. Other highly represented contact residues include polar and aromatic residues, which are likely to interact with rRNA via hydrogen bonds and base stacking interactions, respectively. Interestingly, the proportion of K residues generally decreases with r-protein size, reflecting a negative correlation between protein lengths and the proportion of K (Spearman’s rank correlation, ρ?=??0.802, p?=?2.60e???5). We suggest that this trend helps the smaller r-proteins, which experience higher translational entropy than large proteins, overcome the increased free energy barrier during assembly. When the r-protein sequences were categorized according to the species’ optimal growth temperature, we found that thermophiles show increased R, Isoleucine (I), and Tyrosine (Y) content, whereas mesophiles have increased proportions of Serine (S) and Threonine (T). These results reflect one typical distinction between thermophiles and mesophiles (Kumar and Nussinov 2001), yet these differences in amino acid distributions do not extend to their respective contact sites. That is, the makeup of thermophilic and mesophilic r-protein contact residues are not significantly different (p?>?0.01). This indicates that, while the percent compositions of amino acids relating to qualities such as thermostability and protein folding are expected to vary with environmental temperature, the distributions of residues in contact with rRNA are comparable for all bacterial species. From this, we conclude that the electrostatic interactions that guide ribosome assembly are independent of temperature.  相似文献   

6.
7.
A high-resolution cryo-EM reconstruction of a ribosome-bound dicistrovirus IRES (Schüler et al., 2006) and the crystal structure of its ribosome binding domain (Pfingsten et al., 2006) provide new insights into an exceptional eukaryotic translation mechanism.  相似文献   

8.
Oligonucleotide analysis, by a novel computerized procedure, was first applied to determine the sequence of an ideal E. coli promoter (Scherer et al., Nucl. Acids Res. 1978, 5:3759-3773) and has now been used to obtain the sequence of nucleotides that should be present in a messenger RNA for optimum binding to the E. coli ribosome. This sequence is: UU.UUAAAAAUUAAGGAGGUAUAUUAUGAAAAAAAUUAAAAAACUCAA AA U A AUA A CUC G. Comparison of this sequence with each of the 68 ribosome binding site sequences used to generate it shows a preference rather than an absolute requirement for a specific base in any given position. The preference for certain bases persists along the whole length of the RNA within the ribosome binding domain even though nearly half of that length includes translated codons. Thus messages without leader sequences (like lambda CI mRNA) can still have some affinity for the ribosome. Part of the model sequence is complementary to the 3'end of 16S rRNA.  相似文献   

9.
10.
R.J. Flower 《Aquatic Ecology》2001,35(3-4):261-280
The CASSARINA Project is a co-ordinated joint study of recent environmental change in North African wetland lakes. Nine primary sites were selected for detailed study comprising three sites in each of Morocco, Tunisia and Egypt. Multi-disciplinary studies were undertaken by scientists from each of these countries working in co-operation with colleagues in the UK and Norway. The detailed results are presented in a consecutive suite of papers that describe both modern ecosystem attributes and the recent environmental histories of each site. This paper presents an overview of the aims, structure and initial results of the project.Modern site attributes measured were water quality and phytoplankton (Fathi et al., 2001), zooplankton (Ramdani et al., 2001b), fish (Kraïem et al., 2001) and littoral vegetation (Ramdani et al., 2001a). Baseline water quality data showed that one site (Megene Chitane) was acid with low salinity but the others had high alkalinities with varying degrees of brackishness. All the sites tended to be eutrophic and the phytoplankton was mainly dominated by green or blue-green algae. Where fish were present, growth rates were high with marginally highest rates in the Egyptian Delta lakes (Kraïem et al., 2001). Marginal vegetation surveys showed that emergent macrophytes were still extensive only in the Delta lakes (Ramdani et al., 2001a) where they form important refuges and restrict water pollution. In 1998, one Moroccan wetland lake (Merja Bokka) was drained completely for cultivation.Site specific environmental change records for the 20th century period were obtained using palaeolimnological techniques. Sediment core chronologies (Appleby et al., 2001) were based mainly on radio-isotopes (210Pb and 137Cs). Sedimentary remains of aquatic biota, diatoms, zooplankton, higher plants and benthic animals (Flower et al., 2001; Ramdani et al., 2001c; Birks et al., 2001a) and pollen (Peglar et al., 2001) were investigated (Birks et al., 2001b). Major differences in past species abundances were found and were interpreted in terms relevant to biodiversity and water quality/availability change. Metals and pesticide residues in sediment cores indicated that lake contamination was generally lower than in some European sites but some DDE profiles showed a close correspondence with known usage histories (Peters et al., 2001).Hydrological changes affecting water quality and availability mainly arose from land-use intensification during the 20th century and are shown to be the main driver of biodiversity disturbance at all nine CASSARINA sites. Summarizing floristic and faunistic changes using species richness values indicated that freshening of the Delta lakes during this century generally increased aquatic diversity. Species richness also increased during the final drainage of Bokka but tended to decline in acid Chitane. Modern sampling showed that phytoplankton and epiphytic diatom diversity was higher in the Delta lakes but this was not so for zooplankton. Each biological group reacted differently to environmental disturbance and this lack of concordance makes overall diversity changes difficult to predict.  相似文献   

11.
The life-long addition of new neurons has been documented in many regions of the vertebrate and invertebrate brain, including the hippocampus of mammals (Altman and Das, 1965; Eriksson et al., 1998; Jacobs et al., 2000), song control nuclei of birds (Alvarez-Buylla et al., 1990), and olfactory pathway of rodents (Lois and Alvarez-Buylla, 1994), insects (Cayre et al., 1996) and crustaceans (Harzsch and Dawirs, 1996; Sandeman et al., 1998; Harzsch et al., 1999; Schmidt, 2001). The possibility of persistent neurogenesis in the neocortex of primates is also being widely discussed (Gould et al., 1999; Kornack and Rakic, 2001). In these systems, an effort is underway to understand the regulatory mechanisms that control the timing and rate of neurogenesis. Hormonal cycles (Rasika et al., 1994; Harrison et al., 2001), serotonin (Gould, 1999; Brezun and Daszuta, 2000; Beltz et al., 2001), physical activity (Van Praag et al., 1999) and living conditions (Kemperman and Gage, 1999; Sandeman and Sandeman, 2000) influence the rate of neuronal proliferation and survival in a variety of organisms, suggesting that mechanisms controlling life-long neurogenesis are conserved across a range of vertebrate and invertebrate species. The present article extends these findings by demonstrating circadian control of neurogenesis. Data show a diurnal rhythm of neurogenesis among the olfactory projection neurons in the crustacean brain, with peak proliferation during the hours surrounding dusk, the most active period for lobsters. These data raise the possibility that light-controlled rhythms are a primary regulator of neuronal proliferation, and that previously-demonstrated hormonal and activity-driven influences over neurogenesis may be secondary events in a complex circadian control pathway.  相似文献   

12.
13.
Horizontal gene transfer in microbial genome evolution   总被引:1,自引:0,他引:1  
Horizontal gene transfer is the collective name for processes that permit the exchange of DNA among organisms of different species. Only recently has it been recognized as a significant contribution to inter-organismal gene exchange. Traditionally, it was thought that microorganisms evolved clonally, passing genes from mother to daughter cells with little or no exchange of DNA among diverse species. Studies of microbial genomes, however, have shown that genomes contain genes that are closely related to a number of different prokaryotes, sometimes to phylogenetically very distantly related ones. (Doolittle et al., 1990, J. Mol. Evol. 31, 383-388; Karlin et al., 1997, J. Bacteriol. 179, 3899-3913; Karlin et al., 1998, Annu. Rev. Genet. 32, 185-225; Lawrence and Ochman, 1998, Proc. Natl. Acad. Sci. USA 95, 9413-9417; Rivera et al., 1998, Proc. Natl. Acad. Sci. USA 95, 6239-6244; Campbell, 2000, Theor. Popul. Biol. 57 71-77; Doolittle, 2000, Sci. Am. 282, 90-95; Ochman and Jones, 2000, Embo. J. 19, 6637-6643; Boucher et al. 2001, Curr. Opin., Microbiol. 4, 285-289; Wang et al., 2001, Mol. Biol. Evol. 18, 792-800). Whereas prokaryotic and eukaryotic evolution was once reconstructed from a single 16S ribosomal RNA (rRNA) gene, the analysis of complete genomes is beginning to yield a different picture of microbial evolution, one that is wrought with the lateral movement of genes across vast phylogenetic distances. (Lane et al., 1988, Methods Enzymol. 167, 138-144; Lake and Rivera, 1996, Proc. Natl. Acad. Sci. USA 91, 2880-2881; Lake et al., 1999, Science 283, 2027-2028).  相似文献   

14.
Klaholz BP 《The EMBO journal》2010,29(22):3747-3749
In the current issue, Weis et al (2010a) and Fu et al (2010) provide cryo-electron microscopy snapshots of different states of the bacterial ribosome-rescuing complex with tmRNA. This regulatory RNA molecule remarkably carries both tRNA- and mRNA-like elements that have to move through the ribosome machinery when it is stalled on an mRNA lacking a termination codon. The comparison of three intermediate states gives novel insights into the mechanism of tmRNA translocation and transient accommodation on the ribosome, and into trans-translation—the template switching from a defective mRNA to the short coding region of the tmRNA, which allows rescuing the stuck ribosome.  相似文献   

15.
The protein synthesis machinery largely evolved prior to the last common ancestor and hence its study can provide insight to early events in the origin of life, including the transition from the hypothetical RNA world to living systems as we know them. By utilizing information from primary sequences, atomic resolution structures, and functional properties of the various components, it is possible to identify timing relationships (Hsiao et al., 2009; Fox, 2010). Taken together, these timing events are used to develop a preliminary time line for major evolutionary events leading to the modern protein synthesis machinery. It has been argued that a key initial event was the hybridization of two or more RNAs that created the peptidyl transferase center, (PTC), of the ribosome (Agmon et al. 2005). The PTC, left side of figure, contains a characteristic cavity/pore that serves as the entrance to the exit tunnel and is thought to be essential to the catalysis (Fox et al., 2012). This cavity is distinct from typical RNA pores (right side of figure) in that the nitrogenous bases face towards the lumen of the pore and thus are available for hydrogen bonding interactions. In typical RNA pores, the bases carefully avoid the lumen region. In support of Agmon et al. 2005), it is argued that this key difference reflects the fact the pore was created by an early hybridization event rather than normal RNA folding.  相似文献   

16.
SL1 is a stem-loop RNA sequence from the genome of HIV-1 thought to be the initiation site for the dimerization of the retroviral genomic RNA. The aim of this study is to check the stability in solution of different experimental dimeric structures available in the literature. Two kinds of dimer have been evidenced: an extended duplex looking like a double helix with two internal bulges and a kissing complex in which the monomers with a stem/loop conformation are linked by intermolecular loop-loop interactions. Two divergent experimental structures of the kissing complex from the Lai isolate are reported in the literature, one obtained from NMR (Mujeeb et al., Nature Structural Biology, 1998, Vol. 5, pp. 432-436) and the other one from x-ray crystallography (Ennifar et al., Nature Structural Biology, 2001, Vol. 8, pp. 1064-1068). A crystallographic structure of the Mal isolate was also reported (Ennifar et al., Nature Structure Biology, 2001, Vol. 8, pp. 1064-1068). Concerning the extended duplex, a NMR structure is available for Lai (Girard et al., Journal of Biomolecular Structure and Dynamics, 1999, Vol. 16, pp. 1145-1157) and a crystallographic structure for Mal (Ennifar et al., Structure, 1999, Vol. 7, pp. 1439-1449). Using a molecular dynamics technique, all these experimental structures have been simulated in solution with explicit water and counterions. We show that both extended duplex structures are stable. On the contrary, the crystallographic structures of the Lai and Mal kissing complexes are rapidly destabilized in aqueous environment. Finally, the NMR structure of the Lai loop-loop kissing complex remains globally stable over a 20 ns MD simulation, although large rearrangements occur at the level of the stem/loop junctions that are flexible, as shown from free energy calculations. These results are compared to electrophoresis experiments on dimer formation.  相似文献   

17.
18.
19.
Ribosomal protein mutations in Arabidopsis (Arabidopsis thaliana) result in a range of specific developmental phenotypes. Why ribosomal protein mutants have specific phenotypes is not fully known, but such defects potentially result from ribosome insufficiency, ribosome heterogeneity, or extraribosomal functions of ribosomal proteins. Here, we report that ovule development is sensitive to the level of Ribosomal Protein L27a (RPL27a) and is disrupted by mutations in the two paralogs RPL27aC and RPL27aB. Mutations in RPL27aC result in high levels of female sterility, whereas mutations in RPL27aB have a significant but lesser effect on fertility. Progressive reduction in RPL27a function results in increasing sterility, indicating a dose-dependent relationship between RPL27a and female fertility. RPL27a levels in both the sporophyte and gametophyte affect female gametogenesis, with different developmental outcomes determined by the dose of RPL27a. These results demonstrate that RPL27aC and RPL27aB act redundantly and reveal a function for RPL27a in coordinating complex interactions between sporophyte and gametophyte during ovule development.Eukaryotic cytoplasmic ribosomes are comprised of two subunits, a large 60S and a small 40S subunit. The 60S subunit includes 25S or 28S, 5.8S, and 5S ribosomal RNA (rRNA) and approximately 47 ribosomal proteins, whereas the 40S subunit includes an 18S rRNA and approximately 33 ribosomal proteins. In plants and animals, reduced ribosomal protein function results in specific developmental phenotypes (Byrne, 2009; Warner and McIntosh, 2009; McCann and Baserga, 2013; Terzian and Box, 2013; Tsukaya et al., 2013). Currently, it is not known how ribosomal proteins modulate development. Potentially specific developmental phenotypes in ribosomal protein mutants are an outcome of ribosome haploinsufficiency and reduced global protein synthesis or reduced translation of specific proteins. Alternatively, ribosomal proteins, in addition to their role in translation, may have extraribosomal function required for specific developmental processes.In Arabidopsis (Arabidopsis thaliana), cytoplasmic ribosomal proteins are encoded by two to five genes (Barakat et al., 2001; Giavalisco et al., 2005; Carroll et al., 2008). Mutations in single ribosomal protein genes are sometimes gametophyte or embryo lethal (Weijers et al., 2001; Tzafrir et al., 2004). However, many ribosomal protein mutants are viable. These mutants typically display a subtle change in leaf shape and may also have distinct developmental defects affecting embryo morphogenesis, inflorescence development, the transition to flowering, and plant stature (Van Lijsebettens et al., 1994; Ito et al., 2000; Pinon et al., 2008; Yao et al., 2008; Byrne, 2009; Fujikura et al., 2009; Falcone Ferreyra et al., 2010; Rosado et al., 2010; Horiguchi et al., 2011; Szakonyi and Byrne, 2011a, 2011b; Stirnberg et al., 2012). Female fertility is also reduced in several ribosomal protein mutants. Mutations in the ribosomal protein genes SHORT VALVE1 (STV1)/RPL24B, SUPPRESSOR OF ACAULIS52 (SAC52)/RPL10A, ARABIDOPSIS MINUTE-LIKE1 (AML1)/RPS5B, and the Ribosomal Protein L27a gene RPL27aC reduce female fertility (Weijers et al., 2001; Nishimura et al., 2005; Imai et al., 2008; Szakonyi and Byrne, 2011b). aml1 and sac52-t1 are partially and fully gametophyte lethal, respectively. Although lower fertility in stv1 and rpl27ac is associated with defective ovules, the nature of the fertility defect in these mutants has not been fully explored.Female gametophyte development is also disrupted by mutations in a number of genes predicted to be involved in ribosome biogenesis. SLOW WALKER1 (SWA1), SWA3/Arabidopsis thaliana RNA HELICASE36 (AtRH36), and NUCLEOLAR FACTOR1 (NOF1) encode nucleolar-localized proteins required for processing 18S pre-rRNA (Shi et al., 2005; Harscoët et al., 2010; Huang et al., 2010; Liu et al., 2010). Mutations in other genes encoding proteins predicted to be involved in pre-rRNA processing and ribosome maturation or in export of preribosomes from the nucleus to the cytoplasm also reduce female fertility (Li et al., 2009, 2010; Chantha et al., 2010; Wang et al., 2012; Missbach et al., 2013). These mutants share similar phenotypes, where female gametophyte development is delayed and there is a failure in progression through gametophyte mitotic cell divisions. Transmission of these ribosome biogenesis mutants through the female is often reduced. This ostensibly reflects a requirement for active ribosome synthesis and sufficient ribosome levels to support morphogenesis of the gametophyte.Here, we show that mutations in a number of different ribosomal protein genes lead to reduced seed set and an increase in the number of defective ovules in siliques. This is particularly apparent in mutants affecting ribosomal protein RPL27a. We show the two RPL27a genes, RPL27aC and RPL27aB, act redundantly and that ovule development is sensitive to the dose of RPL27a. rpl27ac and rpl27ab mutations are together female and male gametophyte lethal. Single rpl27ac mutants also result in some female gametophyte lethality. In the homozygous rpl27ac-2 mutant, the mature embryo sac is frequently expelled from the ovule, suggesting RPL27a is necessary for maintaining a viable gametophyte. However, in the heterozygous rpl27ac-2/+, gametogenesis frequently fails early in development. This occurs independent of the genotype of the gametophyte, indicating somatic sporophyte cells in the mutant affect gametophyte development. Together, our data demonstrate that appropriate levels of RPL27a in the sporophyte and gametophyte are required for female gametophyte development and plant fertility.  相似文献   

20.
Vestibular input to brain monoamine neurons--a review   总被引:1,自引:0,他引:1  
Yates et al. reported that serotonergic RN neurons are associated with vestibulo-sympathetic responses and may control BP changes during body repositioning (Yates et al., 1992; 1993). Pompeiano et al. demonstrated that LC-NA neurons participate in the postural control and modify the vestibulo-spinal reflex (Pompeiano et al., 1990; 1991a; 2001). Nishiike et al. (1996a) examined the effects of caloric vestibular stimulation on the neuronal activity of LC-NA neurons in rats. The predominant effect of CA with both hot- and cold-water on the electrical activity of LC neurons is inhibitory and persists for several minutes. GABAA receptors located on the postsynaptic membrane of LC neurons are responsible for these inhibitory responses. The VLM may inhibit LC neuronal activity in response to the CA via GABAA receptors (Nishiike et al., 1997). It is suggested that LC-NA inhibition is involved in the development of motion sickness (Nishiike et al., 2001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号