首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones.  相似文献   

2.
The internal phylogeny of the arachnid order Opiliones is investigated by including molecular data from five molecular markers for ca. 140 species totalling 43 families of Opiliones. The phylogenetic analyses consisted of a direct optimization (DO) approach using POY v. 4 and sophisticated tree search algorithms as well as a static alignment analysed under maximum likelihood. The four Opiliones suborders were well‐supported clades, but subordinal relationships did not receive support in the DO analysis, with the exception of the monophyly of Palpatores (=Eupnoi + Dyspnoi). Maximum‐likelihood analysis strongly supported the traditional relationship of Phalangida and Palpatores: (Cyphophthalmi ((Eupnoi + Dyspnoi) Laniatores)). Relationships within each suborder are well resolved and largely congruent between direct optimization and maximum‐likelihood approaches. Age estimates for the main Opiliones lineages suggest a Carboniferous diversification of Cyphophthalmi, while its sister group, Phalangida, diversified in the Early Devonian. Diversification of all suborders predates the Triassic, and most major lineages predate the Cretaceous. The following taxonomic changes are proposed. Dyspnoi: Hesperonemastoma is transferred to Sabaconidae. Insidiatores: Sclerobunidae stat. nov. is erected as a family for Zuma acuta. © The Willi Hennig Society 2009.  相似文献   

3.
Phalangida includes three of the four suborders of Opiliones (Arachnida): Eupnoi, Dyspnoi and Laniatores. We review the literature on the sensory structures and capabilities of Phalangida, provide new morphological data for 18 species and discuss the 11 sensory structures that have been described in the group. Based on the published data encompassing both behaviour and morphology, three conclusions are apparent: (1) species of Phalangida appear to have limited abilities to detect stimuli at a distance; (2) close range olfaction probably helps to find foods with strong odours, but (3) they appear to be highly dependent on contact chemoreception to detect live prey, predators and mates. We also highlight the fact that legs I in the three suborders and pedipalps in Dyspnoi and Eupnoi are very important sensory appendages, thus legs II should not be called the ‘sensory appendages’ of harvestmen. In conclusion, we highlight the fact that the sensory capabilities, diet, prey capturing and handling ability, and foraging behaviour of species of Phalangida seem to be different from those of most other arachnids. Finally, we suggest future directions for studies in the field of the sensory system of the group.  相似文献   

4.
Among the Opiliones, species of the suborders Cyphophthalmi, Eupnoi, Dyspnoi and Laniatores have shown very diverse diploid chromosome numbers. However, only certain Eupnoi species exhibit XY/XX and ZZ/ZW sex chromosome systems. Considering the scarcity of karyotypical information and the absence of structurally identifiable sex chromosomes in the suborder Laniatores, we decided to analyse the chromosomes and bivalents of Discocyrtus pectinifemur (Gonyleptidae) to identify possible sex differences. Testicular cells examined under light microscopy showed a high diploid number, 2 n  = 88, meta/submetacentric chromosome morphology and a nucleolar organizer region on pair 35. Prophase I microspreading observed in transmission electron microscopy exhibited 44 synaptonemal complexes with similar electron density and thickness. The total and regular synapsis between the chromosomes of the bivalents was also noted in pachytene nuclei. Male mitotic and meiotic chromosomes revealed no distinct characteristic that could be related to the occurrence of heteromorphic sex chromosomes. Evolutionary trends of chromosome differentiation in the four suborders of Opiliones are discussed here.  相似文献   

5.
Pedipalps are the most versatile appendages of arachnids. They can be equipped with spines (Amblypygi), chelae (Scorpiones), or adhesive pads (Solifugae), all of which are modifications to grasp and handle fast‐moving prey. Harvestmen (Opiliones) show a high diversity of pedipalpal morphologies. Some are obviously related to prey capture, like the enlargement and heavy spination of Laniatores pedipalps. Many Dyspnoi, by contrast, exhibit thin, thread‐like pedipalps that are covered with complex glandular setae (clavate setae). These extrude viscoelastic glue that is used to immobilize prey items. Comparable setae (plumose setae) have previously been found in representatives of both Eupnoi and Dyspnoi, yet comprehensive data on their distribution are lacking. This study examined the distribution and ultrastructure of glandular setae in harvestmen and related them to pedipalpal morphology. Pedipalpal and setal characters were analysed in a phylogenetic framework. We found that glandular setae are synapomorphic for and widespread in the Palpatores clade (Eupnoi plus Dyspnoi). Their occurrence correlates with pedipalp morphology and feeding habit. Remnants of arthropod cuticular structures or secretions, frequently found attached to glandular setae, and behavioural observations, underlined the importance of the setae for capturing and securing prey. We hypothesize that glandular setae evolved as an adaptation to capture small and agile prey, which are hard to catch with a capture basket. Details of ultrastructure indicate that the setae are derived sensilla chaetica, with both a secretory and sensory function. Derived ultrastructural characters of the glandular setae, such as slit‐like channel openings and a globular arrangement of the microtrichia, may increase their effectiveness. The functional role of further pedipalpal modifications, such as apophyses, stalked and hyperbendable joints, and curved segments, as well as sexual dimorphism and ontogenetic polymorphism, are discussed. Some implications of the results obtained for the taxonomic treatment of Phalangiidae are also discussed. These results shed new light on the biology and evolutionary history of this fascinating group of arthropods.  相似文献   

6.
Among the least studied harvestmen are the members of the family Caddidae sensu Shear, 1975 , a group of Opiliones with massive eyes and the putative sister group of the remaining Eupnoi. Caddids were originally described as two families, Caddidae and Acropsopilionidae, but these are currently treated as subfamilies of Caddidae. These minute arachnids are rarely collected and present some interesting biogeographical patterns, including a disjunct distribution between East Asia and eastern North America, and some of the few cases of trans‐Pacific genera in southern hemisphere Opiliones. We therefore obtained samples from most of the landmasses inhabited by Caddidae and undertook a phylogenetic study using nuclear and mitochondrial genes for as many samples as possible. Our results, based on a broad taxonomic sampling, surprisingly showed polyphyly of Caddidae, with the genus Caddo forming the sister group of the remaining Eupnoi, whereas the southern hemisphere genera, many of which were originally placed in Acropsopilionidae, within Dyspnoi, formed the sister clade of the remaining Dyspnoi. In addition, the more recently described genus Hesperopilio, from Western Australia and Chile, was unrelated to either Caddidae or Acropsopilionidae, despite having the supposedly diagnostic large ocularium, and instead appeared deeply nested within the Eupnoi superfamily Phalangioidea. Our results are robust to analytical treatment and to homology scheme (dynamic vs. static notions of homology), resulting in a new phylogenetic proposal for Eupnoi and Dyspnoi. Ancestral state reconstruction suggests that the ancestral Palpatores was probably a tiny harvestman with an enlarged ocularium and glandular palpal setae in its enlarged and armed palps. We take the following taxonomic actions: Acropsopilionidae is removed from synonymy under Caddidae and its family status and membership in Dyspnoi are restored. Hesperopilio Shear, 1996 is removed from Caddoidea/Caddidae and transferred to Phalangioidea, but it is not assigned to any family.  相似文献   

7.
8.
Morphological characters are essential for establishing phylogenetic relationships, delimiting higher‐level taxa, and testing phylogenetic relationships inferred from molecular sequence data. In cases where relationships between large clades remain unresolved, it becomes imperative to establish which character systems are sound predictors of phylogenetic signal. In the case of Laniatores, the largest suborder of Opiliones, some superfamilial relationships remain unresolved or unsupported, and traditionally employed phenotypic characters are typically of utility only at the family level. Here we investigated a promising set of morphological characters that can be discretized and scored in all Opiliones: cuticular structures of the distal podomeres (metatarsi and tarsi). We intensively sampled members of all known families of Laniatores, and define here three new, discrete appendicular characters toward refinement of Laniatores superfamilial systematics: metatarsal paired slits (MPS; occurring in all Laniatores except Sandokanidae), proximal tarsomeric gland (PTG; in Icaleptidae, Fissiphalliidae, and Zalmoxidae), and tarsal aggregate pores (TAP; found in Gonyleptoidea, Epedanoidea, and Pyramidopidae). We conducted statistical tests on each character to characterize the strength of phylogenetic signal and assess character independence, based on alternative tree topologies of Laniatores. All three characters had high retention indices and bore significantly strong phylogenetic signal. Excepting one pairwise comparison, morphological characters did not evolve in a correlated manner, indicating that appendicular morphology does not constitute a single character system. Our results demonstrate the predictive power and utility of appendicular characters in Opiliones phylogeny, and proffer a promising source of diagnostic synapomorphies for delimiting superfamilies.  相似文献   

9.
Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best‐studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best‐fitting explanation of the distribution of scent‐gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well‐founded opilionid chemosystematics.  相似文献   

10.
A stable phylogenetic hypothesis for families within jellyfish class Scyphozoa has been elusive. Reasons for the lack of resolution of scyphozoan familial relationships include a dearth of morphological characters that reliably distinguish taxa and incomplete taxonomic sampling in molecular studies. Here, we address the latter issue by using maximum likelihood and Bayesian methods to reconstruct the phylogenetic relationships among all 19 currently valid scyphozoan families, using sequence data from two nuclear genes: 18S and 28S rDNA. Consistent with prior morphological hypotheses, we find strong evidence for monophyly of subclass Discomedusae, order Coronatae, rhizostome suborder Kolpophorae and superfamilies Actinomyariae, Kampylomyariae, Krikomyariae, and Scapulatae. Eleven of the 19 currently recognized scyphozoan families are robustly monophyletic, and we suggest recognition of two new families pending further analyses. In contrast to long-standing morphological hypotheses, the phylogeny shows coronate family Nausithoidae, semaeostome family Cyaneidae, and rhizostome suborder Daktyliophorae to be nonmonophyletic. Our analyses neither strongly support nor strongly refute monophyly of order Rhizostomeae, superfamily Inscapulatae, and families Ulmaridae, Catostylidae, Lychnorhizidae, and Rhizostomatidae. These taxa, as well as familial relationships within Coronatae and within rhizostome superfamily Inscapulatae, remain unclear and may be resolved by additional genomic and taxonomic sampling. In addition to clarifying some historically difficult taxonomic questions and highlighting nodes in particular need of further attention, the molecular phylogeny presented here will facilitate more robust study of phenotypic evolution in the Scyphozoa, including the evolution characters associated with mass occurrences of jellyfish.  相似文献   

11.
A phylogenetic estimation of the temperate Gondwanan mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) was conducted using 143 morphological variables (59 raw and 84 scaled measurements) from 37 ingroup and 15 outgroup terminals. We used custom algorithms to do pairwise comparisons between characters and identify sets of dependent characters, which were collapsed using principal components analysis. We analysed the resulting data without discretization under the parsimony criterion. Monophyly or paraphyly of most groups suspected from previous molecular and morphological phylogenetic studies were recovered. Trees were optimized for monophyly of 20 different focus clades by varying character phylogenetic independence. This yielded a final tree with monophyly of 15 out of 20 focus clades, including the South African pettalids, which contains the troglomorphic species Speleosiro argasiformis Lawrence, 1931. Two of the remaining five clades were found paraphyletic, with the genera Aoraki, Rakaia, and Siro always being found polyphyeletic.  相似文献   

12.
13.
Agreement among recent morphological and molecular phylogenetic analyses has strengthened estimates of the relationships among the earliest lineages of the holometabolan order Lepidoptera. For a few major groups, evidence for monophyly and basal relationships remains relatively weak or contradictory — chiefly within the clades of basal Glossata and Heteroneura. Here we assess the support for these controversial areas of lepidopteran classification through molecular systematic investigation of 18S rDNA sequence variation. Parsimony and maximum likelihood analyses are presented for 1379 alignable sites of 18S. These data are then combined with 61 morphological features scored for major lineages of basal Glossata and Heteroneura. Our 18S rDNA data support recent hypotheses for the placement of Micropterigidae and Agathiphagidae as the basal-most lineages of Lepidoptera, and support the monophyly of the groups Neolepidoptera and Exoporia. 18S data alone are shown to be insufficient for resolving the monophyly and relationships of the Glossata, and for specifying relationships above the Neolepidoptera. Combination of the 18S data with published morphological ground-plan scorings improves overall support for the morphology-based hypothesis for basal glossatans, but phylogenetic resolution among published alternatives for the basal Heteroneura remains a major question for lepidopteran systematics.  相似文献   

14.
Species of Encarsia F?rster (Hymenoptera: Aphelinidae, Coccophaginae) are economically important for the biological control of whitefly and armored scale pests (Hemiptera: Aleyrodidae, Diaspididae). Whereas some regional keys for identification of Encarsia species are now available, few studies have addressed relationships within this diverse and cosmopolitan genus because of unreliable morphological data. Nuclear sequences of the D2 expansion region of 28S rDNA were determined from 67 strains of 24 species representing 10 species groups of Encarsia, 2 strains of Encarsiella noyesi Hayat, and 1 strain of Coccophagoides fuscipennis Girault. Analysis of molecular data alone and combined with morphological data resolves many nodes not resolved by morphology alone and offer insights into which morphological characters are useful for supporting group relationships. All analyses that include molecular data reveal Encarsia to be paraphyletic with respect to Encarsiella. If monophyly of Encarsia is constrained, the relationships are the same but with a different root within Encarsia, and these trees are presented as an alternate hypothesis. The luteola and strenua species groups are shown by both morphological and molecular data to be monophyletic, whereas the inaron group, the E. nigricephala + luteola group, and the E. quericola + strenua group are supported only by molecular data. The aurantii and parvella species groups are not supported in any of the analyses. The utility of morphological characters for defining species group relationships is discussed.  相似文献   

15.
We assess phylogenetic relationships within the polychaete family Hesionidae from morphological data combined with nucleotide data from 18S rDNA, 28S rDNA, 16S rDNA and COI. Parsimony and Bayesian analyses were performed on two data sets; the first was based on a more restricted set of terminals with both morphological and molecular data (17 ingroup terminals), while the second included additional taxa with morphological data only (25 ingroup terminals). The different sets of terminals yielded fully congruent results, as did the parsimony and the Bayesian analyses. Our results indicate high levels of homoplasy in traditionally used morphological characters in the group, and that Hesioninae, Gyptini and Gyptis are nonmonophyletic. Hesionini (mainly Hesione and Leocrates ), Psamathini (mainly Hesiospina , Micropodarke , Nereimyra , Psamathe and Syllidia ), Ophiodrominae (Gyptini and Ophiodromini) and Ophiodromini (mainly Heteropodarke , Ophiodromus and Podarkeopsis ) are monophyletic and agree with previous classifications, and Hesionini is probably the sister to all other hesionids. The placements of the small hesionids capricornia and Lizardia , the hydrothermal vent taxa Hesiodeira and Hesiolyra , and the newly described Hesiobranchia , remain uncertain.  相似文献   

16.
The phylogenetic relationships of 22 species of Coelopidae are reconstructed based on a data matrix consisting of morphological and DNA sequence characters (16S rDNA, EF-1alpha). Optimal gap and transversion costs are determined via a sensitivity analysis and both equal weighting and a transversion cost of 2 are found to perform best based on taxonomic congruence, character incongruence, and tree support. The preferred phylogenetic hypothesis is fully resolved and well-supported by jackknife, bootstrap, and Bremer support values, but it is in conflict with the cladogram based on morphological characters alone. Most notably, the Coelopidae and the genus Coelopa are not monophyletic. However, partitioned Bremer Support and an analysis of node stability under different gap and transversion costs reveal that the critical clades rendering these taxa non-monophyletic are poorly supported. Furthermore, the monophyly of Coelopidae and Coelopa is not rejected in analyses using 16S rDNA that was manually aligned. The resolution of the tree based on this reduced data sets is, however, lower than for the tree based on the full data sets. Partitioned Bremer support values reveal that 16S rDNA characters provide the largest amount of tree support, but the support values are heavily dependent on analysis conditions. Problems with direct comparison of branch support values for trees derived using fixed alignments with those obtained under optimization alignment are discussed. Biogeographic history and available behavioral and genetic data are also discussed in light of this first cladogram for Coelopidae based on a quantitative phylogenetic analysis.  相似文献   

17.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

18.
Proseriate flatworms are common members of the interstitial benthic fauna worldwide, predominantly occupying marine environments. As minute animals, having relatively few characters useful for cladistic analysis, they have been difficult to present in a phylogenetic framework using morphology alone. Here we present a new morphological matrix consisting of 16 putatively homologous characters and two molecular data sets to investigate further this major group of free-living members of the Platyhelminthes. Complete 18S rDNA (representing 277 parsimony-informative characters) from 17 ingroup taxa and partial 28S rDNA spanning variable expansion regions D1 to D3 and D1 to D6 (representing 219 and 361 parsimony-informative characters, respectively) from 27 and 14 ingroup taxa, respectively, were determined and aligned as complementary data sets. Morphological and molecular data sets were analyzed separately and together to determine underlying phylogenetic patterns and to resolve conflict between published scenarios based on morphology alone. The monophyly of the Proseriata cannot be confirmed categorically with any of these data sets. However, the constituent taxa are confirmed as basal members of the Neoophora, and a sister group relationship with Tricladida is rejected. Similarly, the monophyly of one of the two subtaxa of the Proseriata, the Lithophora, could not be confirmed with molecules. Concerning intragroup relationships, we could reject one of the two phylogenetic trees formerly proposed, as well as the clade Otoplanidae + Coelogynoporidae. However, a clade Otoplanidae + Archimonocelididae + Monocelididae (to which the Monotoplanidae belong) was supported, and the position of the genus Calviria shifted from the Archimonocelididae to the Coelogynoporidae.  相似文献   

19.
The species richness and endemism of New Caledonia are traditionally held to result from the main island's Gondwanan origin and progressive diversification subsequent to extended isolation. Recent studies have challenged this hypothesis, promoting a scenario of recent origins and diversifications of New Caledonian arthropod groups. In the present study, the phylogeny of the endemic harvestman family Troglosironidae (Opiliones: Cyphophthalmi) is investigated using DNA sequence data from two nuclear ribosomal genes (18S rRNA and 28S rRNA) and two mitochondrial genes (the protein-coding cytochrome c oxidase subunit I and the ribosomal 16S rRNA). Phylogenetic analyses support the monophyly of Troglosironidae and a scenario of an ancient (> 200 Ma) origin of the family, with subsequent diversification of extant lineages in the Eocene. These results corroborate the relictual nature of taxa among New Caledonia's biota while being consistent with diversification in accordance with geological events in the Eocene.  相似文献   

20.
Harvestmen (Arachnida, Opiliones) are especially dependent on chemical cues and are often regarded as animals that rely mainly on contact chemoreception. Information on harvestman sensilla is scarce when compared to other arachnid orders, especially concerning internal morphology. Using scanning (SEM) and transmission (TEM) electron microscopy, we investigated tarsal sensilla on the distal tarsomeres (DT) of all leg pairs in Heteromitobates discolor (Laniatores, Gonyleptidae). Furthermore, we explored the typological diversity of sensilla present on the DT I and II in members of the suborder Laniatores, which include two thirds of the formally described opilionid fauna, using species from 17 families representing all main laniatorian lineages. Our data revealed that DT I and II of H. discolor are equipped with wall-pored falciform hairs (two types), wall-pored sensilla chaetica (two types) and tip-pored sensilla chaetica, while DT III and IV are mainly covered with trichomes (non-sensory) and tip-pored sensilla chaetica. The ultrastructural characteristics support an olfactory function for all wall-pored sensilla and a dual gustatory/mechanoreceptive function for tip-pored sensilla chaetica. Based on our comparative SEM survey, we show that wall-pored sensilla occur in all investigated Laniatores, demonstrating their widespread occurrence in the suborder and highlighting the importance of both legs I and II as the sensory appendages of laniatorean harvestmen. Our results provide the first morphological evidence for olfactory receptors in Laniatores and suggest that olfaction is more important for harvestmen than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号