首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present report, an efficient method for isolating multiple cytosolic forms of glutathione S-transferases from liver and kidney cytosolic samples of two salmonid species (brown trout and Atlantic salmon) is described, and some of the multiple properties of these enzymes are presented. Glutathione S-transferases were partially purified by low-pressure affinity chromatography on a column with glutathione coupled to agarose, which retained an average of 89.47% of the total activity. The GST activity was appropriated towards CDNB and ETHA as substrates. The application of an HPLC system associated to elestrospray ionization mass spectrometry allowed the identification of five GST cytosolic isoforms, corresponding to subunits with M(r) between 23,700 and 26,900 Da being the main form, with retention time of 17 min, a pi-class-related GST isoenzyme.  相似文献   

2.
1. Induction of individual isoenzymes of glutathione-S-transferase (GST) by model contaminants has been studied in the gilthead seabream Sparus aurata. The fish were exposed for 2 and 7 days to dieldrin, malathion, Aroclor 1254, paraquat and CuCl2 injected intraperitoneally at two different doses. 2. In hepatic crude extracts, modest inductions (≤ 40%) of the 1-chloro-2,4-dinitrobenzene (CDNB) dependent activity were produced by some of the malathion and copper (II) treatments whereas Aroclor 1254 and dieldrin provoked higher increases (up to 100%) in the ethacrynic acid (EA) dependent activity in some cases. 3. The GST isoenzyme patterns of the samples, obtained directly from the crude extracts by a rapid HPLC on-line assay method (12) were different and characteristic for each treatment. Each isoenzyme was quantified, and in all the samples tested there were one or two isoforms whose increase relative to the control was higher than that observed in the total GST activity of crude extracts. 4. These results indicate that GST activity profiles of crude extracts could be of value as biomarkers in environmental studies.  相似文献   

3.
5-(Pentafluorobenzoylamino)fluorescein (PFB-F), a new thiol-reactive molecule was synthesized to improve the detection limits and specificity of the assays for glutathione S-transferase (GST) activity and glutathione (GSH). A rapid assay method to measure GSH concentration or GST activity and the simultaneous analysis of multiple samples is possible because the glutathione adduct, GS-TFB-F, is separated from PFB-F by thin-layer chromatography (TLC) and can be quantitated by a fluorescence scanner. The detection limits for GSH and for GST activity using TLC were found to be as low as 10 pmol/microl and 1 ng/microl using equine liver GST, respectively. Determination of GSH concentration or GST activity in bovine pulmonary artery endothelial (BPAE) cell lysates gave a linear response for samples corresponding to 500-2500 cells. PFB-F could also measure GST activities of GST fusion proteins and prove to be a suitable substrate for determining the activities of human GST isozymes and other sources of mammalian GST. The selectivity of PFB-F with GSH was proven by comparing trace amount of the adducts that formed with cysteine and beta-galactosidase to that formed with GSH. The HPLC profile of a reaction mixture where cell lysate was used in place of purified GST, also shows only two main peaks, corresponding to GS-TFB-F and unreacted PFB-F. The selectivity of PFB-F for GSH was further confirmed by exposing BPAE cells to dl-buthionine-[S,R]-sulfoximine (BSO). Our results of GS-TFB-F determination indicate that 12-, 24-, or 36-h incubations with BSO caused 2-, 6-, or 7.6-fold reductions in GSH levels, respectively.  相似文献   

4.
A novel method for the rapid purification of glutathione S-transferases (GST) from tissue and cell culture samples is reported. A high-performance glutathione affinity column was used and produced results comparable to those obtained with classical agarose affinity columns. Experiments with purified rat liver GST standards resulted in 87% recovery of total activity. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the affinity-purified GST was identical to the GST standard and revealed three major protein bands, corresponding to the Ya, Yb, and Yc subunits. A fourth protein band (relative molecular mass 25 000), migrating slightly faster than the Ya subunit, was present in both the standard and eluted GST samples. This polypeptide was tentatively identified as the Yk subunit. Successful purification from rat liver and Walker 256 rat carcinoma cell cytosols was also performed. Recovery of total GST enzymatic activity from Walker cell and rat liver cytosol was 49 and 58%, respectively. SDS-PAGE of these samples indicated a high degree of purity. This methodology requires less than 1 h and can be performed using small quantities of tissue. These features make this technique applicable to analysis of a broad range of biological applications including human biopsy material for GST content.  相似文献   

5.
Sulfhydryl groups, glutathione peroxidase (GPx) and glutathione-S-transferase (GST) are important elements of the antioxidant defence in the organism. The efficacy of their antioxidant action is influenced by many factors. In this work, the effect of fasting on total, protein-bound and nonprotein sulfhydryl groups and on the activity of liver and serum GPx and GST in rats were determined. Male Wistar rats were divided into two groups: non-fasted and 18-hour fasted. In fasted animals liver content of nonprotein sulfhydryl groups (represented predominantly by reduced glutathione; GSH) was diminished by 22% in comparison to non-fasted group, whereas total and protein-bound -SH groups were unaffected. The activity of liver and serum GPx was unchanged in food deprived rats. In these animals the activity of GST in serum was reduced by 26%. Fasting had no significant effect on the activity of GST in the liver. Our results demonstrate that in rats deprived of food for 18 hours liver and serum GPx and GST are not involved in protection against action of reactive oxygen species formed during fasting. The observed drop in the content of liver nonprotein sulfhydryl groups without concomitant rise in the activity of GPx and GST indicates that this effect may be due to augmented degradation of GSH, its potentiated efflux from hepatocytes and formation of conjugates with intermediates arising as a result of reactive oxygen species action.  相似文献   

6.
We have recently reported that anti-SLA seropositive autoimmune hepatitis (AIH) patients develop autoantibodies against glutathione S-transferase (GST). GSTs are multifunctional enzymes mediating hepatic detoxification of cytotoxic and genotoxic compounds and are also involved in biliary secretion. We have observed varying reactivity of individual AIH sera towards several GST isoenzymes. Since the GST subunits have very similar molar masses and therefore are not satisfactorily resolved by one-dimensional gel electrophoresis, we have performed their fractionation by reverse-phase high performance liquid chromatography (HPLC) to better separate the individual GST isoenzymes. 4 individual GST subunits were isolated as judged by electrophoretic analysis of the 4 distinct peaks. The identity of isolated proteins was unequivocally determined by protein sequencing. Isolated subtypes were loaded on 15% SDS gels and blotted. Immunoblotting was performed with eleven anti-SLA positive sera that displayed differential reactivity with total GSTs. Fractionation of the GSTs by HPLC did not impair their ability to react with specific autoantibodies. Interestingly, the majority of GST-positive AIH sera reacted with one or two GST subtypes, only two sera recognized 3 subunits. Ya was most prevalent autoantigen. Autoantibodies against Yb2 were detected solely in one serum. This pattern of reactivity indicates that individual patients' sera discriminate between GST subunits despite their sequence homology. It is well known that the GST variants differ within their amino-terminal part while the residual moiety is highly conserved. It would suggest that autoantibodies recognize distinct epitopes located within amino-terminus of individual GST variants.  相似文献   

7.
Metabolism of testosterone to various products (catalyzed by several different CYP isozymes) and the activities of phenol sulfotransferase (pST) and glutathione transferase (GST) in S9 fractions prepared from the mucosa of the duodenum, jejunum, ileum, caecum and upper and lower colon of male Sprague-Dawley rats were determined and compared to the corresponding hepatic and renal activities. Incubation of the S9 fraction prepared from the jejunum with testosterone and NADPH resulted in the formation of 2alpha-, 6alpha-, 6beta- and 16alpha-hydroxytestosterone and androstenedione at rates that were 1.6, 24, 1.3, 0.6 and 1.3%, respectively, of the corresponding hepatic values. The production of 2alpha-hydroxytestosterone was catalyzed only by the preparations from the duodenum and jejunum; whereas 6alpha-, 6beta- and 16alpha-hydroxytestosterone and androstenedione were produced in all regions of the intestine. In the case of the rat kidney, the rates of formation of the different testosterone metabolites were between 0.6 and 35% of the corresponding liver activity. The activity of glutathione transferase was approximately 12-26% of the corresponding hepatic activity throughout the intestine. The highest activity of phenol sulfotransferase was observed in the lower colon (almost 6% of the liver activity) and the lowest activity in the duodenum (1%). The renal activities of GST and pST were 70 and 1%, respectively, of the corresponding liver values. In summary, the metabolism of testosterone and the activities of GST and pST in rat intestine are generally low to very low in comparison to the corresponding activities in rat liver. In most cases, these activities are present throughout the entire intestine and not restricted to a particular portion(s) of this organ.  相似文献   

8.
The glutathione transferases (GSTs) are a large group of enzymes having both detoxication roles and specialist metabolic functions. The present work represents an initial approach to identifying some of these roles by examining the variation of specific members of the family under differing conditions. The GSTs from Lucilia cuprina have been partially purified, members of two families being isolated, by the use of glutathione immobilised on epichlorhydrin-activated Sepharose 6B. The GSTs were separated by 2D SDS-PAGE and characterised by MALDI-TOF analysis of tryptic peptides. The mass fragments were then matched against the corresponding Drosophila melanogaster and Musca domestica sequences. GSTs were identified as coming from only the Sigma and Delta classes. The multiple Delta zones appear all to be derived from the Lucilia GSTD1 isoform. The distribution of these GST proteins has been studied during different developmental stages of the insect. Delta isoforms were present in all developmental stages of L. cuprina. The Sigma GST was not detectable in the egg, was just detectable in the larval and pupal stages and was the major GST isolated in the adult. Sigma and Delta isoforms were both found in all body segments of the insect. Both isoforms appear to undergo extensive post-translational modification. Activities of the two types of protein with model substrates have been determined.  相似文献   

9.
Six forms of glutathione S-transferase (GST) designated as GST 9.3, GST 7.5, GST 6.6, GST 6.1, GST 5.7 and GST 4.9 have been purified to homogeneity from rat brain. All GST isoenzymes of rat brain are apparent homodimers of one of the three type subunits, Ya, Yb, or Yc. More than 60% of total GST activity of rat brain GST activity is associated with the isoenzymes containing only the Yb type of subunits. In these respects brain GST isoenzymes differ from those of lung and liver. The Ya, Yb, and Yc type subunits of brain GST are immunologically similar to the corresponding subunits of liver and lung GST. The isoelectric points and kinetic properties of the Yb type subunit dimers in brain are strikingly different from those of the Yb type dimers present among liver GST isoenzymes indicating subtle differences between these subunits of brain and liver.  相似文献   

10.
Kupffer cells are known to participate in the early events of liver injury involving lipid peroxidation. 4-Hydroxy-2,3-(E)-nonenal (4-HNE), a major aldehydic product of lipid peroxidation, has been shown to modulate numerous cellular systems and is implicated in the pathogenesis of chemically induced liver damage. The purpose of this study was to characterize the metabolic ability of Kupffer cells to detoxify 4-HNE through oxidative (aldehyde dehydrogenase; ALDH), reductive (alcohol dehydrogenase; ADH), and conjugative (glutathione S-transferase; GST) pathways. Aldehyde dehydrogenase and GST activity was observed, while ADH activity was not detectable in isolated Kupffer cells. Additionally, immunoblots demonstrated that Kupffer cells contain ALDH 1 and ALDH 2 isoforms as well as GST A4-4, P1-1, Ya, and Yb. The cytotoxicity of 4-HNE on Kupffer cells was assessed and the TD50 value of 32.5+/-2.2 microM for 4-HNE was determined. HPLC measurement of 4-HNE metabolism using suspensions of Kupffer cells incubated with 25 microLM 4-HNE indicated a loss of 4-HNE over the 30-min time period. Subsequent production of 4-hydroxy-2-nonenoic acid (HNA) suggested the involvement of the ALDH enzyme system and formation of the 4-HNE-glutathione conjugate implicated GST-mediated catalysis. The basal level of glutathione in Kupffer cells (1.33+/-0.3 nmol of glutathione per 10(6) cells) decreased significantly during incubation with 4-HNE concurrent with formation of the 4-HNE-glutathione conjugate. These data demonstrate that oxidative and conjugative pathways are primarily responsible for the metabolism of 4-HNE in Kupffer cells. However, this cell type is characterized by a relatively low capacity to metabolize 4-HNE in comparison to other liver cell types. Collectively, these data suggest that Kupffer cells are potentially vulnerable to the increased concentrations of 4-HNE occurring during oxidative stress.  相似文献   

11.
Glutathione transferase (GST) activity revealed in vacuoles of red beetroot (Beta vulgaris L.) cells was investigated in comparison with the GST activity of plastids and extracts of tissues. The level of GST activity determined by spectrophotometric method proved fairly high in water extracts and membrane fractions of isolated vacuoles and plastids, as well as in water extracts of tissues. In the objects studied, pH dependence of the GST activity slightly differed. Optimal pH for the vacuolar GST activity was in the range 7.0–7.5, for the GST of plastids and tissue extracts it was 7.5. The GSTs differed in specificity to the substrates fluorodifen and ethacrynic acid. The activity of the vacuolar and tissue extract GSTs with fluorodifen was significantly higher than that of the GST from plastids. Ethacrynic acid, often used as a competitive inhibitor of GST, almost completely inhibited the GST activity assayed with 1-chloro-2,4-dinitrobenzene as a main substrate. However, ethacrynic acid was a substrate only for the GSTs of vacuoles and tissue extract, but not for the GST of plastids. Using zymography allowing estimation of the GST activity in a gel after electrophoresis of proteins, several zones of enzymatic activity were revealed in all objects that may correspond to different isozymes. It was found that the composition of the vacuolar GST isoforms and their substrate specificity may differ from the GSTs of other cellular structures. It is assumed that vacuole, having quite high activity of GST, should make a significant contribution to intracellular detoxification processes.  相似文献   

12.
A glutathione S-transferase isozyme which is absent in normal rat liver has been isolated from the hereditary hyperbilirubinuria rat liver cytosol. The enzyme was purified to apparent homogeneity by GSH-affinity chromatography and HPLC on CM-Sepharose CL-6B. It is a heterodimer of two non-identical subunits, i.e., subunit 2 and a previously uncharacterized subunit referred to here as subunit Yx. Immunoblot analysis indicated that GST 2-Yx belongs to the alpha class. GST 2-Yx is characterized by its 4-fold higher activity towards 4-hydroxy-non-2-enal, compared to that of GST 2-2.  相似文献   

13.
14.
H(2)O(2) inactivation of particular GST isoforms has been reported, with no information regarding the overall effect of other ROS on cytosolic GST activity. The present work describes the inactivation of total cytosolic GST activity from liver rats by the oxygen radical-generating system Cu(2+)/ascorbate. We have previously shown that this system may change some enzymatic activities of thiol proteins through two mechanisms: ROS-induced oxidation and non-specific Cu(2+) binding to protein thiol groups. In the present study, we show that nanomolar Cu(2+) in the absence of ascorbate did not modify total cytosolic GST activity; the same concentrations of Cu(2+) in the presence of ascorbate, however, inhibited this activity. Micromolar Cu(2+) in either the absence or presence of ascorbate inhibited cytosolic GST activity. Kinetic studies show that GSH but no 1-chloro-2,4-dinitrobenzene prevent the inhibition on cytosolic GST induced by micromolar Cu(2+) either in the absence or presence of ascorbate. On the other hand, NEM and mersalyl acid, both thiol-alkylating agents, inhibited GST activity with differential reactivity in a dose-dependent manner. Taken together, these results suggest that an inhibitory Cu(2+)-binding effect is likely to be negligible on the overall inhibition of cytosolic GST activity observed by the Cu(2+)/ascorbate system. We discuss how modification of GST-thiol groups is related to the inhibition of cytosolic GST activity.  相似文献   

15.
The biochemical properties of an in vivo hormonally regulated low Km cAMP phosphodiesterase (PDE) activity associated with a liver Golgi-endosomal (GE) fraction have been characterized. DEAE-Sephacel chromatography of a GE fraction solubilized by a lysosomal extract resulted in the sequential elution of three peaks of activity (numbered I, II, and III), while ion-exchange HPLC resolved five peaks of activity (numbered 1, 2, 3, 4, and 5). Based on the sensitivity of the eluted activity to cGMP and selected phosphodiesterase inhibitors, two phosphodiesterase isoforms were resolved: a cGMP-stimulated and EHNA-inhibited PDE2, eluted in DEAE-Sephacel peak I and HPLC peak 2 and a cGMP-, a cilostamide-, and ICI 118233-inhibited PDE3, eluted in DEAE-Sephacel peak III and HPLC peaks 3, 4, and 5. GE fractions isolated after acute treatments with insulin, tetraiodoglucagon, and growth hormone displayed an increase in phosphodiesterase activity relative to saline-injected controls, as did GE fractions from genetically obese and hyperinsulinemic rats relative to lean littermates. In all experimental rats, an increase in PDE3 activity associated with DEAE-Sephacel peak III and HPLC peaks 4 and 5 was observed relative to control animals. Furthermore, in genetically obese Zucker rats, an increase in the sensitivity of PDE activity to cilostamide and in the amount of PDE activity immunoprecipitated by an antibody to adipose tissue PDE3 was observed relative to lean littermates. These results extend earlier studies on isolated hepatocytes and show that liver PDE3 is the main if not sole PDE isoform activated by insulin, glucagon, and growth hormone in vivo.  相似文献   

16.
SD 大鼠自由饮用绞股蓝汁(绞股蓝汁每天新鲜配制,浓度为每100 g 水2 g 茶叶,100℃的水温浸泡30 min,取上清液),连续给药60 d,取出肝脏,用差速离心法制备肝脏胞浆液及肝脏微粒体,采用双光束紫外分光光度法测定 CYP3A、CYP2E1、NADPH-细胞色素 C 还原酶、UGT、GST 的活性及细胞色素 b5的含量,结果显示绞股蓝可显著升高细胞色素 b5的含量,显著诱导 CYP3A、UGT、GST、NADPH-细胞色素 C 还原酶的活性,但对 CYP2E1没有影响。提示绞股蓝与药物合用时,在体内可能会发生代谢性药物相互作用。  相似文献   

17.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

18.
A glutathione transferase from human mononuclear leukocytes with a high activity towardtrans-stilbene oxide (GT-tSBO) has been studied in liver and blood from fetus and adults and in blood from neonates. Using starch gel electrophoresis, different phenotypes of GST1 have been determined, GST1 0, GST1 1, and GST1 2. As judged from activity measurements and the fact that only those individuals who express the null allele of GST1, the GST1 0, which has a low activity towardtrans-stilbene oxide, it is concluded that the hepatic transferase GST1 is identical to GT-tSBO, as well as to hepatic transferase μ. In addition, it has been shown that the different genotypes of GST1 1 (GST1 1-1, GST1 1-0) and GST1 2 (GST1 2-2, GST1 2-0) can be separated by measuring the GT-tSBO activity in whole blood from the same individual. It is also demonstrated that GT-tSBO activity is much lower in fetal liver, approximately 10 times, compared with adult liver, while this activity seems to be unchanged in the blood from fetus and adults, as well as in neonates.  相似文献   

19.
Most drug-metabolizing phase I and phase II enzymes, including the glutathione S-transferases (GST), exhibit a zonated expression in the liver, with lower expression in the upstream, periportal region. To elucidate the involvement of pituitary-dependent hormones in this zonation, the effect of hypophysectomy and 3,3',5-triiodo-L-thyronine (T3) on the distribution of GST was studied in rats. Hypophysectomy increased total GST activity both in the periportal and perivenous liver region. Subsequent T3 treatment counteracted this effect in the perivenous zone. However, analysis for either mu class M1/M2-specific (1,2-dichloro-4-nitrobenzene) or alpha class A1/A2-specific (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) GST activity revealed that T3 treatment did not significantly affect the perivenous activity of these GST classes. In contrast, T3 was found to significantly counteract the increase of alpha class GST activity caused by hypophysectomy in the periportal zone. To establish whether this effect was T3-specific, hepatocytes were isolated from either the periportal and perivenous zone by digitonin/collagenase perfusion and cultured either as pyruvate-supplemented monolayer or as co-culture with rat liver epithelial cells. Only in the latter it was found that T3 suppressed the A1/A2-specific GST activity and alpha class proteins predominantly in periportal cells. The data demonstrate that T3 is an important factor responsible for the low expression of alpha GST in the periportal region. T3 may be involved in the periportal downregulation of other phase I and II enzymes as well.  相似文献   

20.
An Alpha-class glutathione transferase (GST) has been cloned from pig gonads. In addition to two conservative point mutations our nucleotide sequence presents a frame shift resulting from a missing A as compared to a previously published porcine GST A1-1 sequence. The deduced C-terminal amino-acid segment of the protein differs between the two variants. Repeated sequencing of cDNA isolated from different tissues and animals ruled out the possibility of a cloning artifact, and the deduced amino acid sequence of our clone showed higher similarity to related mammalian GST sequences. Hereafter, we refer to our cloned enzyme as GST A1-1 and to the previously published enzyme as GST A1-1. The study of the tissue distribution of the GSTA1 mRNA revealed high expression levels in many organs, in particular adipose tissue, liver, and pituitary gland. Porcine GST A1-1 was expressed in Escherichia coli and its kinetic properties were determined using alternative substrates. The catalytic activity in steroid isomerization reactions was at least 10-fold lower than the corresponding values for porcine GST A2-2, whereas the activity with 1-chloro-2,4-dinitrobenzene was approximately 8-fold higher. Differences in the H-site residues of mammalian Alpha-class GSTs may explain the catalytic divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号