首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the “insoluble” enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60°C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.  相似文献   

2.
A commercial laccase from Trametes versicolor was conjugated with biopolymer chitosan using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) as the cross-linking agent. Laccase-chitosan conjugation strategies were tested using different molar ratios of glucosamine monomer/protein with different molar excess ratios of EDC relative to laccase. Immobilization techniques were developed to improve the stability against thermal and chemical denaturation, storage and reusability of this biocatalyst. The conjugation resulted in a solid biocatalyst with an apparent laccase activity of ±626 U/g, 12 and 60 folds higher in the conjugation efficiency of biocatalyst relative to the immobilized and free laccase activity respectively when compared with zero EDC/laccase ratio used in conjugation solution. The conjugated laccases formed successfully eliminated the emerging pollutant triclosan (TCS) from aqueous solutions, having a higher potential to transform TCS than free laccase. UPLC-QTOF results indicate the formation of TCS oligomers. Furthermore, they are the first evidence of direct dechlorination of TCS mediated by the oxidative action of laccases.  相似文献   

3.
Magnetic nanobiocatalysts for tag cleavage on fusion proteins have been prepared by immobilizing enterokinase (EK) onto iron oxide magnetic nanoparticles coated with biopolymers. Two different chemistries have been explored for the covalent coupling of EK, namely carbodiimide (EDC coupling) and maleimide activation (Sulfo coupling). Upon immobilization, EK initial activity lowered but EDC coupling lead to higher activity retention. Regarding the stability of the nanobiocatalysts, these were recycled up to ten times with the greater activity losses observed in the first two cycles. The immobilized EK also proved to cleave a control fusion protein and to greatly simplify the separation of the enzyme from the reaction mixture.  相似文献   

4.
alpha-L-rhamnopyranosidase (Rha, EC 3.2.1.40) is an enzyme of considerable importance in food technology for increasing the aroma of wines, musts, fruit juices and other alcoholic beverages. The aim of this research is to study the purification of Rha contained in a commercial preparation already used in the winemaking industry. With the procedure adopted, Rha recovery values were excellent (ca 85%), comparable with those we found in a previous paper on the purification of other glycosidases such beta-D-glucopyranosidase (betaG) and alpha-L-arabinofuranosidase (Ara) [1]. The Rha purification value (4.3) and drastic reduction in brown compounds (DeltaAbs 95%) represent other strengths of the proposed method that has proved inexpensive and simple to apply. In addition, purified Rha has shown itself to be more stable than other glycosidases. This had optimum effect at pH 4, while optimum temperature was 70 degrees C, greater than that found for other glycosidases. The purified enzyme was characterized in terms of the kinetic parameters K(m) (1.40 mM) and V(max) (1.30 U mg(-1) of protein) and subsequently used to increase aroma a model wine solution containing aromatic precursors extracted from the skins of Moscato grapes, with an increase in the content of total terpenols of ca 2.3 times.  相似文献   

5.
Alpha-chymotrypsin (CT) as model enzyme was conjugated onto the novel carboxyl-functionalized superparamagnetic nanogels, prepared via facile photochemical in situ polymerization, by using 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide (EDC) as coupling reagent. The obtained magnetic immobilized enzyme was characterized by use of photo correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) measurement, thermogravimetric (TG) analysis and vibrating sample magnetometer (VSM) measurement. PCS result showed that the immobilized enzyme was 68 nm in diameter while the magnetic nanogels with carboxyl groups were only 38 nm; enzyme immobilization led to pronounced change in size. Superparamagnetic properties were retained for Fe3O4 after enzyme immobilization while slightly reducing its value of saturation magnetization. Immobilization and surface coating did not induce phase change of Fe3O4 by XRD analysis. The binding capacity was 30 mg enzyme/g and 37.5 mg enzyme/g nanogel determined by TG analysis and BCA protein assay, respectively. Specific activity of the immobilized CT was calculated to be 0.77 U/(mg min), 82.7% as that of the free form.  相似文献   

6.
Chitosan (CS) is considered a suitable biomaterial for enzyme immobilization. CS combination with polyethylene glycol (PEG) can improve the biocompatibility and the properties of the immobilized system. Thus, the present work investigated the effect of the PEG in the horseradish peroxidase (HRP) immobilization into chitosan nanoparticles from the morphological, physicochemical, and biochemical perspectives. CS and CS/PEG nanoparticles were obtained by ionotropic gelation and provided immobilization efficiencies (IE) of 65.8 % and 51.7 % and activity recovery (AR) of 76.4 % and 60.4 %, respectively. The particles were characterized by DLS, ZP, SEM, FTIR, TGA and DSC analysis. Chitosan nanoparticles showed size around 135 nm and increased to 229 nm after PEG addition and HRP immobilization. All particles showed positive surface charges (20−28 mV). Characterizations suggest nanoparticles formation and effective immobilization process. Similar values for optimum temperature and pH for immobilized HRP into both nanoparticles were found (45 °C, 7.0). Vmax value decreased by 5.07 to 3.82 and 4.11 mM/min and KM increased by 17.78 to 18.28 and 19.92 mM for free and immobilized HRP into chitosan and chitosan/PEG nanoparticles, respectively. Another biochemical parameters (Kcat, Ke, and Kα) evaluated showed a slight reduction for the immobilized enzyme in both nanoparticles compared to the free enzyme.  相似文献   

7.
An immobilization method using chitosan prepared from chitin as an insoluble carrier was investigated. Glucose isomerase, urease, glucamylase, trypsin and glucose oxidase were attached to chitosan by the aid of water soluble carbodiimide. Their activity yields were as follows; glucose isomerase 32%, urease 44%, glucamylase 8%, trypsin 10%, glucose oxidase 37%.

Immobilized glucose isomerase showed no significant changes in optimal temperature and heat stability. But pH optimum of reaction and pH stability range were somewhat lowered. The inhibitory effects of bivalent metal ions were considerably reduced by immobilization and similar tendency was observed for buffer reagents such as Tris or veronal. Immobilized glucose isomerase was inhibited by 8 m urea or 6 m guanidine hydrochloride in nearly the same way as free enzyme. With SDS, cysteine or mercaptoethanol free glucose isomerase was scarcely affected by these reagents, while immobilized enzyme considerably suffered to a loss of its activity.  相似文献   

8.
Functionalization of carbon nanotubes (CNTs) with proteins is often a key step in their biological applications, particularly in biosensing. One popular method has used the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) to covalently conjugate proteins onto carboxylated CNTs. In this article, we critically assess the evidence presented in these conjugation studies in the literature. As CNTs have a natural affinity for diverse proteins through hydrophobic and electrostatic interactions, it is therefore important to differentiate protein covalent attachment from adsorption in the immobilization mechanism. Unfortunately, many studies of conjugating proteins onto CNTs using EDC lacked essential controls to eliminate the possibility of protein adsorption. In studies where the attachment was claimed to be covalent, discrepancies existed and the observed immobilization appeared to be due to adsorption. So far, bond analysis has been lacking to ascertain the nature of the attachment using EDC. We recommend that this approach of covalent immobilization of proteins on CNTs be re-evaluated and treated with caution.  相似文献   

9.
1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), a water-soluble carbodiimide, inhibited ECF1-F0 ATPase activity and proton translocation through F0 when reacted with Escherichia coli membrane vesicles. The site of modification was found to be in subunit c of the F0 portion of the enzyme but did not involve Asp-61, the site labeled by the hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD). EDC was not covalently incorporated into subunit c in contrast to DCCD. Instead, EDC promoted a cross-link between the C-terminal carboxyl group (Ala-79) and a near-neighbor phosphatidylethanolamine as evidenced by fragmentation of subunit c with cyanogen bromide followed by high-pressure liquid chromatography and thin-layer chromatography.  相似文献   

10.
Phospholipase A2 (PLA2) from cobra venom, which can hydrolyze the SN2 ester bond of 1,2-diacylphosphatides, was immobilized by covalent binding to porous chitosan beads. Immobilization has to be carried out by using the carboxylic groups instead of the amine groups of the enzyme to get reasonable activity retention (higher than 50%). The effects of amount of activating reagent EDC and enzyme loading during the immobilization step were investigated. Since EDC could modify important Asp groups in the enzyme, the EDC/enzyme weight ratio should be less than 10. Although the activity retention of immobilized enzyme increased with enzyme/bead weight ratio, this ratio should be kept to a minimum at 1×10−3 to optimize coupling yield of enzyme activity and reduce internal diffusion resistance. The kinetic properties and stability of the immobilized enzyme were determined. The immobilized PLA2 was packed into a column to hydrolyze phospholipid in a circulating packed-bed reactor. The flow rate of the substrate solution should be set at 37.5 cm/min (superficial velocity) to eliminate external diffusion resistance, under which condition the column reactor could be reused up to 10 times with less than 20% loss of activity. Since enzymatic hydrolysis of phospholipid on low density lipoprotein (LDL) particle surface with PLA2 could result in faster plasma clearance of the modified LDL particles, an in vitro bioreactor containing immobilized PLA2 should be able to lower serum cholesterol concentration. A significant decrease in total serum cholesterol concentration in hypercholesterolemic rabbits was observed after 90-min treatment.  相似文献   

11.
Water-soluble carbodiimide [EDC: (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)] is a useful reagent for chemical modification of carboxyl group of various proteins. Model experiments to establish detailed conditions for the cross-linking reaction with EDC were conducted. Since the reactivity of hexamethylenediamine as a nucleophile was almost comparable to that of glycine ethyl ester, AH-Sephadex and the carboxyl group of aspartylphenylalanine methyl ester were coupled by EDC. From the hydrolyzate of the isolated gel, aspartic acid and phenylalanine methyl ester were identified. When bovine serum albumin (BSA) was incubated with AH-Sephadex and EDC, about 90 % of the BSA was coupled to the gel by 3 hr incubation. Moreover, BSA was effectively coupled with the carboxymethyl cellulose (CMC) after activation of the carboxyl groups of CMC with EDC followed by the removal of excess EDC. The latter case would be useful for cross-linking the enzyme molecules to the matrix because of the very mild reaction conditions. For example, endodextranase, which readily lost its activity upon being incubated with EDC (suggesting that a carboxyl group was essential for the enzyme activity), was effectively immobilized to CMC with EDC. This improved reaction step for the cross-linking seemed to be especially useful for the glycosylases, because in most of these enzymes carboxyl groups play a role in the catalytic residue.  相似文献   

12.
The carboxyl groups of the bifunctional cellulase–chitosanase (CCBE), purified from a commercial cellulase prepared from Trichoderma viride were modified using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC). The EDC modified CCBE lost 80–90% of its chitosnase activity and 20% of its carboxylmethyl cellulase (CMCase) activity; meanwhile, its conformation changed slightly, which altered the substrate binding affinity to chitosan, without affecting its binding to CMC. However, the modification did not alter the structure integrity. The dynamic analysis of modification indicated that the CCBE possessed two carboxylates essential for its chitosanase activity and one carboxyl group for its CMCase activity. One of the two carboxylates involved in chitosanase activity was deduced to be the proton donator, and the other may function for substrate recognition, while the only catalytic carboxyl group for CMCase activity probably also acted as a proton donator.  相似文献   

13.
β-Amylase (EC 3.2.1.2), obtained from barley, was chemically attached to a crosslinked copolymer of acrylamide-acrylic acid using a water-soluble carbodiimide. The derivative showed 23% β-amylase activity in relation to that of free enzyme with a coupling yield of 40% based on the amount of added β-amylase. In order to find optimal coupling conditions, the effect of pH and different carbodiimide concentrations was investigated. The enzymic activity associated with different β-amylase concentrations was further outlined. A slightly increased operational stability for the enzyme upon immobilization was observed. Markedly improved operational stability has been obtained by coupling in the presence of reduced glutathione of bovine serum albumin.  相似文献   

14.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

15.
Effects of chemical modification of carboxyl groups in the hemolytic lectin CEL-III on its activities were investigated. When carboxyl groups were modified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glycine methyl ester, hemolytic activity of CEL-III decreased as the EDC concentration increased, accompanied by reduction of oligomerization ability and hemagglutinating activity. However, binding ability of CEL-III for immobilized lactose was retained fairly well after modification, suggesting that one of two carbohydrate-binding sites might be responsible for such inactivation of CEL-III.  相似文献   

16.
Effects of chemical modification of carboxyl groups in the hemolytic lectin CEL-III on its activities were investigated. When carboxyl groups were modified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glycine methyl ester, hemolytic activity of CEL-III decreased as the EDC concentration increased, accompanied by reduction of oligomerization ability and hemagglutinating activity. However, binding ability of CEL-III for immobilized lactose was retained fairly well after modification, suggesting that one of two carbohydrate-binding sites might be responsible for such inactivation of CEL-III.  相似文献   

17.
J A Buechler  S S Taylor 《Biochemistry》1990,29(7):1937-1943
The catalytic subunit of cAMP-dependent protein kinase typically phosphorylates protein substrates containing basic amino acids preceding the phosphorylation site. To identify amino acids in the catalytic subunit that might interact with these basic residues in the protein substrate, the enzyme was treated with a water-soluble carbodiimide, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), in the presence of [14C]glycine ethyl ester. Modification of the catalytic subunit in the absence of substrates led to the irreversible, first-order inhibition of activity. Neither MgATP nor a 6-residue inhibitor peptide alone was sufficient to protect the catalytic subunit against inactivation by the carbodiimide. However, the inhibitor peptide and MgATP together completely blocked the inhibitory effects of EDC. Several carboxyl groups in the free catalytic subunit were radiolabeled after the catalytic subunit was modified with EDC and [14C]glycine ethyl ester. After purification and sequencing, these carboxyl groups were identified as Glu 107, Glu 170, Asp 241, Asp 328, Asp 329, Glu 331, Glu 332, and Glu 333. Three of these amino acids, Glu 331, Glu 107, and Asp 241, were labeled regardless of the presence of substrates, while Glu 333 and Asp 329 were modified to a slight extent only in the free catalytic subunit. Glu 170, Asp 328, and Glu 332 were all very reactive in the apoenzyme but fully protected from modification by EDC in the presence of MgATP and an inhibitor peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Laccase is a ligninolytic enzyme that is widespread in white-rot fungi. Alginate–chitosan microcapsules prepared by an emulsification–internal gelation technique were used to immobilize laccase. Parameters of the immobilization process were optimized. Under the optimal immobilization conditions (2% sodium alginate, 2% CaCl2, 0.3% chitosan and 1:8 ratio by volume of enzyme to alginate), the loading efficiency and immobilized yield of immobilized laccase were 88.12% and 46.93%, respectively. Laccase stability was increased after immobilization. Both the free and immobilized laccase alone showed a very low decolorization efficiency when Alizarin Red was selected for dye decolorization test. When 0.1 mM 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was added into the decolorization system, the decolorization efficiency increased significantly. Immobilized laccase retained 35.73% activity after three reaction cycles. The result demonstrated that immobilized laccase has potential application in dyestuff treatment.  相似文献   

19.
研究壳聚糖吸附和戊二醛交联对木聚糖酶固定化条件 .将酶液加入到经醋酸溶液处理过的脱乙酰壳聚糖的pH 4 8的悬液中 ,加入浓度为 0 3%~ 0 4 %的戊二醛溶液 ,室温下 ,8h后得到固定化酶 .固定化酶的半失活温度比游离酶高 ,由 5 1℃升至 71℃ ,Km 值由游离酶的 1 2mg ml增加到1 5mg ml ,最适反应温度也由 5 5℃增加到 71℃ ,而最适反应pH由 4 6下降到 3 8.该固定化木聚糖酶可用于制造低聚木糖 .经过 10次连续应用实验后 ,该固定化酶的活力保持 81%  相似文献   

20.
In this work we use the steady state and time-resolved fluorescence of free and enzyme-bound fluorophores to characterize the binding capacity of both unmodified and hydrophobically modified chitosan polymers. Additionally, fluorescence emission is used to qualitatively characterize the extent to which hydrophobic modification of the chitosan polymer affects the relative polarity of the resultant amphiphillic micelles. In total, these results are used to describe how fluorescence techniques can be used to characterize the chemical microenvironment provided by immobilization polymers such as chitosan. Commentary is also given on how this information can be correlated to enzyme activity and spatial distribution during the immobilization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号