首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CYP1A is known to play important roles in the metabolism, detoxification and bioactivation of carcinogens and other xenobiotics in animals including fish. In our laboratory, CYP1A1 was obtained in a highly purified form with a specific content of 15-17 nmol P450 per mg protein from liver microsomes of feral fish, leaping mullet (Liza saliens). Purified mullet CYP1A1 showed a very high substrate specificities for 7-ethoxyresorufin and 7-methoxyresorufin in a reconstituted system containing purified fish P450 reductase and lipid. In addition, effects of each individual components of the reconstituted system, i.e., CYP1A1 and P450 reductase on 7-methoxyresorufin O-demethylase (MROD) activity were studied. 7-ethoxyresorufin O-deethylase (EROD) activity was strongly inhibited by alpha-naphthoflavone (ANF). At 0.5 and 2.5 microM. ANF inhibited EROD activity by 90 and 98%, respectively. Mullet CYP1A1 did not catalyze monooxygenations of other substrates such as aniline, ethylmorphine, N-nitrosodimethylamine and p-nitrophenol. Antibodies produced against CYP1A1 orthologues in fish such as trout and scup showed strong cross-reactivity with the purified mullet CYP1A1. In addition, anti-L. saliens liver CYP1A1 produced in our laboratory inhibited both the EROD and MROD activities catalyzed by L. saliens liver microsomes but stronger inhibition was observed with EROD activity. On the other hand, anti-mullet CYP1A1 antibodies showed very weak cross-reactivity with two proteins (presumably CYP1A1 and CYP1A2) in 3MC-treated rat liver microsomes. Moreover, 3MC-treated rat liver microsomal EROD activity was weakly inhibited by the anti-L. saliens liver CYP1A1. These results strongly suggested that the purified mullet CYP1A1 is structurally, functionally and immunochemically similar to the CYP1A1 homologues purified from other teleost species but functionally and immunochemically distinct from mammalian CYP1A1.  相似文献   

2.
The primary objective of this study was to determine specific cytochrome P450 isozyme(s) involved in the metabolism of aldrin to its toxic metabolite dieldrin in flathead mullet (Mugil cephalus) liver microsomes. To identify the cytochrome P450 isozyme responsible for the aldrin metabolism in mullet liver, the effects of mammalian‐specific cytochrome P450 inhibitors and substrates were determined in the epoxidation reaction of aldrin. CYP3A‐related inhibitors, ketoconazole, SKF‐525A, and cimetidine, inhibited the metabolism of aldrin. The contribution of CYP1A to the aldrin metabolism was shown by the inhibition of 7‐ethoxyresorufin‐O‐deethylase activity in the presence of aldrin. The results indicate that CY1A and CYP3A are the cytochrome P450s involved in aldrin epoxidase activity in mullet. In addition, the suitability of aldrin epoxidase activity for monitoring of environmental pollution was also assessed in the fish samples caught from four different locations of the West Black Sea coast of Turkey.  相似文献   

3.
4.
The induction of cytochrome P450 1A was studied in gudgeon (Gobio gobio), a common European cyprinid, using both farm-raised and field-caught fish. The effects of sex, reproductive status and past exposure to xenobiotics were assessed. When exposed to beta-naphthoflavone (bNF), reared gudgeon showed a dose-dependent increase of EROD activity with a plateau observed at doses from 20 mg kg-1 (females) and 5 mg kg-1 (males). The sexual difference in EROD activity was related to the gonadosomatic index (GSI) of the female whatever the level of induction. Dose and sex effects were confirmed by the immunodetection of CYP1A protein. More than 1 month was necessary for EROD activity to decrease to baseline levels. A second bNF injection after 32 days gave similar levels of induction, suggesting that EROD induction by bNF was not impaired by a pretreatment. Wild fish were brought from two sites in the Rhone river basin: a low contaminated site (Ain) and a highly contaminated site (Rhone). Wild gudgeon were highly induced by bNF in laboratory conditions, except males from the Rhone site which exhibited EROD levels as high as the EROD plateau found in laboratory conditions. A 2- month depuration period in clean water was necessary for EROD activity in wild gudgeon to decrease to baseline levels. These results provide better knowledge of the main factors of modulation of the induction in gudgeon as well as on the influence of the history of exposure to inducers.  相似文献   

5.
6.
Berberine has long been considered as an antibiotic candidate in aquaculture. However, studies regarding its effects on drug-metabolizing enzymes in fish are still limited. In the present study, the effects of berberine on cytochrome P4501A (CYP1A) and CYP3A in crucian carp were investigated. Injection of different concentrations of berberine (0, 5, 25, 50, and 100 mg/kg) inhibited the CYP1A mRNA expression, thereby inhibiting further the catalytic activity of CYP1A-related ethoxyresorufin-O-deethylase (EROD). Furthermore, both CYP1A expression and EROD activity were further inhibited with increasing berberine concentrations. In addition, the CYP3A expressions at both the mRNA and the protein levels were downregulated by higher berberine concentrations. The catalytic activity of CYP3A-related erythromycin N-demethylase (ERND) was also inhibited by berberine at a dose of no less than 25 mg/kg. Moreover, at the berberine concentration exceeding 25 mg/kg, the inhibition of CYP3A expression and ERND activity increased with increasing berberine concentrations. In vitro experiments were also performed. When berberine was pre-incubated with the crucian carp liver microsomes, it competitively inhibited the corresponding EROD activity with the IC50 of 11.7 μM. However, the ERND activity was slightly inhibited by berberine with the IC50 of 206.4 μM. These results suggest that, in crucian carp, berberine may be a potent inhibitor to CYP1A, whereas the CYP3A inhibition needs a higher concentration of berberine.  相似文献   

7.
This study compared for seabream, Sparus aurata exposed to benzo(a)pyrene-B(a)P-, the response of molecular cytochrome P450 1A (CYP1A) and cellular histopathology biomarkers. Male gilthead seabream, Sparus aurata specimens were exposed for 20 days via water to a series of high B(a)P concentrations. CYP1A was assessed by measuring enzymatic activity (EROD) and CYP1A protein content, and cellular responses were evaluated by routine histopathological methods. In addition, biliary metabolites were measured in order to verify that B(a)P was absorbed and metabolised. Histological lesions, both in liver and gills, increased in parallel to B(a)P concentrations, with the majority of changes representing rather non-specific alterations. Hepatic EROD and CYP1A proteins data showed a concentration-dependent induction, while in the gills, EROD activity but not CYP1A proteins showed a non-monotonous dose response, with a maximum induction level at 200 microg B(a)P.L-1 and decreasing levels thereafter. The findings provide evidence that short-term, high dose exposure of fish can result in significant uptake and metabolism of the lipophilic B(a)P, and in pronounced pathological damage of absorptive epithelia and internal organs.  相似文献   

8.
Cytochrome P4501A (CYP1A) and the 70-kDa stress protein (HSP70) were determined using Western blotting in the ovary and liver of juvenile female rainbow trout (Oncorhynchus mykiss) exposed for 4 days to beta-naphthoflavone (betaNF) following a single intraperitoneal injection. Ovarian CYP1A protein was observed in both control and betaNF-exposed fish, indicating constitutive and inducible expression of CYP1A in immature trout ovaries. CYP1A protein levels determined using densitometry were 14- and 46-fold greater in betaNF-exposed trout compared to controls in the liver and ovary, respectively. Hepatic microsomal ethoxyresorufin O-deethylase (EROD) activity, a specific catalytic marker of CYP1A, was also induced 38-fold above controls following betaNF exposure. Hepatic HSP70 protein expression was significantly higher in whole cell homogenates, but not in cytosolic fractions, collected from betaNF-exposed fish in comparison to control fish. There was no difference in ovarian HSP70 levels determined in whole cell homogenates between control and betaNF-exposed fish. The observation that unlike liver, ovarian HSP70 expression remained unchanged following induction of CYP1A protein may be related to the sensitivity of the teleost ovary to environmental toxicants that act as aryl hydrocarbon receptor agonists.  相似文献   

9.
The effect of β-naphthoflavone (β-NF) on several catalytic activities of cytochrome P450 (CYP) and phase II enzymes putatively controlled by [Ah]-receptor activation in the liver, heart and kidney of gilthead seabream, was investigated. In the liver, β-NF treatment [intraperitoneal injection (i.p.) 50 mg/kg] resulted in an increase of CYP content, immunoreactive CYP 1A and methoxyresorufin-O-demethylase (MEROD), pentoxyresorufin O-depentylase (PROD) and ethoxyresorufin-O-deethylase (EROD) activities. However, β-NF had no effect on any of the hepatic phase II enzymes examined (benzaldehyde dehydrogenase, propionaldehyde dehydrogenase, glutathione S-transferase, UDP-glucuronyl-transferase, DT-diaphorase). Single i.p. injection of 10 mg/kg β-NF showed a maximal induction of CYP 1A-like protein and EROD activity after 3–7 days. CYP 1A and EROD returned to control levels 18-days post-treatment. β-NF injection also caused a rapid increase of a single band size of mRNA recognized by a CYP 1A1 cDNA fragment from sea bass (Dicentrarchus labrax). Expression of mRNA preceded the increase of EROD activity and declined rapidly by 96 h. Dose–response experiments demonstrated that EROD was significantly enhanced in liver by a single injection of 0.3 mg/kg β-NF and was the most sensitive measurement for CYP 1A-like induction. β-NF treatments also increased the expression of CYP 1A-like protein, mRNA and EROD, but not MEROD and PROD activities in heart and kidney.  相似文献   

10.
11.
A 2,037 bp CYP1A1 cDNA (GenBank AF072899) was cloned through screening of a lambdaZipLox cDNA library constructed from the liver of a leaping mullet (Liza saliens) fish captured from Izmir Bay on the Aegean coast of Turkey using rainbow trout CYP1A1 cDNA as a probe. This clone has a 130 bp 5'-flanking region, a 1,563 bp open reading frame (ORF) encoding a 521-amino acid protein (58,972 Da), and a 344 bp 3'-untranslated region without a poly (A) tail. Alignment of the deduced amino acids of CYP1A1 cDNAs showed 58% and 69-96% identities with human and 12 other fish species, respectively. Southern blot analysis suggested that this CYP1A1 cDNA was from a single-copy gene. Based on the comparison with CYP1A1 genes reported for fish and mammals, the leaping mullet CYP1A1 gene is probably split into 7 exons. The intron insertion sites were predicted. Alignment of the CYP1A1 cDNA encoded amino acids from 13 fish and 7 mammalian species disclosed differences in highly conserved amino acids between aquatic and land vertebrates. The possible associated secondary structure; conserved motifs and substrate-binding sites were discussed. The phylogenetic relationships of CYP1A1s among 13 fish species were analyzed by a distance method.  相似文献   

12.
1. The role of protein kinase C (PKC) in B-naphthoflavone (BNF) induction of CYP1A1 in rainbow trout hepatocytes was investigated.2. Primary cultures of rainbow trout hepatocytes treated with BNF for 24 hr showed an increase in microsomal 7-ethyoxyresorufm-O-deethylase (EROD) activity compared to cells treated with vehicle (DMSO) only.3. Increases in EROD activities were proportional to increased concentrations of BNF from 1 to 10 nM reaching a plateau at higher concentrations (20–100 nM) of BNF.4. Western blot analysis using specific antibody (LM4b) against CYP1A1 showed that changes in microsomal CYP1A1 protein paralleled that of EROD activity.5. The induction of EROD activity by BNF required both protein and RNA synthesis since the process was blocked by both cycloheximide and actinomycin D.6. Pretreatment of hepatocytes with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to a dose dependent suppression of BNF-induced EROD activity and CYP1A1 content. TPA alone had no effect on hepatic EROD activity and CYP1A1 protein level.7. Pretreatment with sn-1,2 didecanoylglycerol, a PKC activator, had no effect on BNF-induced EROD activity in these cells.8. Pretreatment of cells with staurosporine, a PKC inhibitor, effectively blocked BNF-induced EROD activity.9. PKC may play a role in the induction of CYP1A1 gene expression in fish liver by BNF.  相似文献   

13.
We studied the mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the chick embryo, which is an organism highly sensitive to TCDD. TCDD was injected into egg yolks prior to embryogenesis, and eggs were incubated for 12 or 18 days. In TCDD-exposed embryos, we observed increased heart wet weight and change in the color of the liver, with abnormal fatty vesicle formation. To determine whether these effects were mediated by the aryl hydrocarbon receptor (AhR), we examined expression levels of AhR, CYP1A4, and CYP1A5. AhR was expressed continuously in the heart and liver during embryogenesis, whereas induction of CYP1A4 and CYP1A5 by TCDD was detected only in the liver. In situ hybridization study of tissue sections revealed induction of CYP1A4 in the abnormal liver tissue in which color change was not observed. To determine whether these different responses to TCDD depended on the cell type, primary cultures of chick hepatocytes and cardiac myocytes were established and 7-ethoxyresorufin-O-deethylase (EROD) activity was measured. Induction of EROD activity following exposure to TCDD was detected in hepatocytes but not in cardiac myocytes. Although the heart is a principal target organ for TCDD toxicity and AhR is expressed throughout embryogenesis, induction of CYP1A was not observed in the chick heart. Thus, we conclude that defects in the heart induced by exposure to TCDD occur via a different pathway than that occurring in the liver.  相似文献   

14.
15.
16.
17.
Hepatic microsomes prepared from 10 fish species from Bermuda were studied to establish features of cytochrome P450 (CYP) systems in tropical marine fish. The majority (7/10) of the species had total P450 content between 0.1 and 0.5 nmol/mg, and cytochrome b5 content between 0.025 and 0.25 nmol/mg. Ethoxycoumarin O-deethylase (ECOD) and aminopyrine N-demethylase (APND) rates in these 7 species were 0.23–2.1 nmol/min/mg and 0.5–11 nmol/min/mg, respectively, similar to rates in many temperate fish species. In contrast to those 7 species, sergeant major (Abudefduf saxatilis) and Bermuda chub (Kyphosus sectatrix) had microsomal P450 contents near 1.7 nmol/mg, among the highest values reported in untreated fish, and had greater rates of ECOD, APND, ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase than did most of the other species. Freshly caught individuals of all species had detectable levels of EROD and aryl hydrocarbon hydroxylase (AHH) activities. Those individuals with higher rates of EROD activity had greater content of immunodetected CYP1A protein, consistent with Ah-receptor agonists acting to induce CYP1A in many fish in Bermuda waters. Injection of tomtate and blue-striped grunt with β-naphthoflavone (BNF; 50 or 100 mg/kg) induced EROD rates by 25 to 55-fold, suggesting that environmental induction in some fish was slight compared with the capacity to respond. AHH rates were induced only 3-fold in these same fish. The basis for disparity in the degree of EROD and AHH induction is not known. Rates of APND and testosterone 6β- and 16β-hydroxylase were little changed by BNF, indicating that these are not CYP1A activities in these fish. Antibodies to phenobarbital-inducible rat CYP2B1 or to scup P450B, a putative CYP2B, detected one or more proteins in several species, suggesting that CYP2B-like proteins are highly expressed in some tropical fishes. Generally, species with greater amounts of total P450 had greater amounts of proteins related to CYP2B. These species also had appreciable amounts of CYP3A-like proteins. Thus, many fishes in Bermuda appear to have induced levels of CYP1A; some also have unusually high levels of total P450 and of CYP2B-like and CYP3A-like proteins. These species may be good models for examining the structural, functional and regulatory properties of teleost CYP and the environmental or ecological factors contributing to high levels of expression of CYP in some fishes.  相似文献   

18.
Male Sprague–Dawley rats were treated intraperitoneally with corn oil, the aryl hydrocarbon receptor (AHR) agonist β‐naphthoflavone (βNF), or the relatively weak AHR agonist α‐naphthoflavone (αNF). Animals treated with βNF experienced a significant loss (12%) of total body mass over 5 days and a dramatic elevation of CYP1A1 mRNA in all of the organs studied. Treatment with αNF had no significant effect on body mass after 5 days and caused only minor increases of liver, kidney, and heart CYP1A1 mRNA. In contrast, lung CYP1A1 mRNA was increased by αNF treatment to levels comparable to that seen with βNF treatment. CYP2E1 mRNA levels were also elevated in liver, lung, kidney, and heart in response to βNF treatment, whereas αNF was without effect. Large increases of CYP1A1‐dependent 7‐ethoxyresorufin O‐deethylation (EROD) activity occurred with microsomes prepared from the tissues of βNF‐treated animals. Comparatively small changes were associated with αNF treatment, with the exception of lung, where EROD activity was increased to approximately 60% of that with βNF treatment. CYP2E1‐dependent p‐nitrophenol hydroxylase (PNP) activity was also increased by βNF treatment in microsomes prepared from kidney (3.1‐fold), whereas αNF was without effect. In contrast, αNF or βNF treatment caused significant decreases of lung microsomal PNP (72% and 27% of corn oil control, respectively) and 7‐pentoxyresorufin O‐deethylation (48% and 17% of corn oil control, respectively) activities, indicating that PNP activity may be catalyzed by P450 isoforms other than CYP2E1 in rat lung. We conclude that βNF and αNF have differential effects on the expression and catalytic activity of CYP1A1 and CYP2E1, depending upon the organ studied. These changes most likely occur as a result of the direct actions of these compounds as AHR agonists, in addition to secondary effects associated with AHR‐mediated toxicity. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 29–40, 1999  相似文献   

19.
Modulation of the cytochrome P450 (CYP) monooxygenase system (P450) by arsenite was investigated in male, adult Sprague-Dawley rats treated with a single dose (75 micromol/kg, sc) of sodium arsenite (As3+). Total CYP content and P450-dependent 7-pentoxyresorufin O-pentylation (PROD) and 7-ethoxyresorufin O-deethylation (EROD) activities of liver microsomes decreased maximally (33, 35, and 50% of control, respectively) 1 day after As3+ treatment. Maximum decreases of CYP content and P450 catalytic activities corresponded with maximum increases of microsomal heme oxygenase (HO) activity and with increased total plasma bilirubin concentrations. EROD activity increased maximally in lung (300%) 5 days after a single dose of As3+. Lung CYP1A1 mRNA and protein levels also increased maximally 5 days after treatment. A small but significant increase in EROD activity (65%) was observed in lung microsomes 24 h following a 1 h infusion of bilirubin (7.5 mg/kg) into rats. However, administration of bilirubin to the lung via intratracheal injection (0.25 and 2.5 mg/kg) did not increase CYP1A1 monooxygenase activity or mRNA. This study demonstrates that P450 is modulated in an isozyme (CYP1A1 vs CYP2B1/2) selective manner in rat lung after acute As3+ administration. Administration of bilirubin, a potential aryl hydrocarbon receptor (AHR) ligand, by infusion or intratracheal instillation did not upregulate pulmonary CYP1A1 at the mRNA level under our treatment conditions.  相似文献   

20.
The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acid substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号