首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tryptophan is an essential amino acid. The liver is primary organ involved the oxidative catabolism of tryptophan. However, in the immune system, tryptophan and its catabolites, kynurenine and 3-hydroxyanthranilic acid (3-HAA), play an anti-inflammatory role. Rheumatoid arthritis (RA) is an autoimmune disease. Collagen induced arthritis (CIA) is an animal model of RA. Therefore, it was of interest to measure concentration of tryptophan, kynurenine and 3-HAA in mice with CIA. Concentration of tryptophan and 3-HAA was measured with HPLC methods. Concentration of kynurenine was measured with colorimetric test. mRNA expression for the kynurenine pathway genes was assessed using qRT-PCR. It has been found that in sera from diseased mice concentration of tryptophan was not changed. Concentration of kynurenine and 3-HAA was decreased. Moreover, in the livers from mice with CIA, concentration of tryptophan and kynurenine was decreased. These observations coincided with decreased mRNA expression for Ido2 and Afm and increased mRNA expression for Kynureninase in the liver. It has been also shown that in CIA the concentration of 3-HAA was increased in the kidneys.  相似文献   

2.
《BBA》2020,1861(11):148278
The terpenoid benzoquinone, rhodoquinone (RQ), is essential to the bioenergetics of many organisms that survive in low oxygen environments. RQ biosynthesis and its regulation has potential as a novel target for anti-microbial and anti-parasitic drug development. Recent work has uncovered two distinct pathways for RQ biosynthesis which have evolved independently. The first pathway is used by bacteria, such as Rhodospirillum rubrum, and some protists that possess the rquA gene. These species derive their RQ directly from ubiquinone (UQ), the essential electron transporter used in the aerobic respiratory chain. The second pathway is used in animals, such as Caenorhabditis elegans and parasitic helminths, and requires 3-hydroxyanthranilic acid (3-HAA) as a precursor, which is derived from tryptophan through the kynurenine pathway. A COQ-2 isoform, which is unique to these species, facilitates prenylation of the 3-HAA precursor. After prenylation, the arylamine ring is further modified to form RQ using several enzymes common to the UQ biosynthetic pathway. In addition to current knowledge of RQ biosynthesis, we review the phylogenetic distribution of RQ and its function in anaerobic electron transport chains in bacteria and animals. Finally, we discuss key steps in RQ biosynthesis that offer potential as drug targets to treat microbial and parasitic infections, which are rising global health concerns.  相似文献   

3.
Post-stroke inflammation may induce upregulation of the kynurenine (KYN) pathway for tryptophan (TRP) oxidation, resulting in neuroprotective (kynurenic acid, KA) and neurotoxic metabolites (3-hydroxyanthranillic acid, 3-HAA). We investigated whether activity of the kynurenine pathway in acute ischemic stroke is related to initial stroke severity, long-term stroke outcome and the ischemia-induced inflammatory response. Plasma concentrations of TRP and its metabolites were measured in 149 stroke patients at admission, at 24 h, at 72 h and at day 7 after stroke onset. We evaluated the relation between the KYN/TRP ratio, the KA/3-HAA ratio and stroke severity, outcome and inflammatory parameters (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and neutrophil/lymphocyte ratio (NLR)). KYN/TRP but not KA/3-HAA correlated with the NIHSS score and with the infarct volume. Patients with poor outcome had higher mean KYN/TRP ratios than patients with more favourable outcome. The KYN/TRP ratio at admission correlated with CRP levels, ESR and NLR. The activity of the kynurenine pathway for tryptophan degradation in acute ischemic stroke correlates with stroke severity and long-term stroke outcome. Tryptophan oxidation is related to the stroke-induced inflammatory response.  相似文献   

4.
7-Methyltryptophan (7MT) or compounds which can be metabolized to 7MT, 3-methylanthranilic acid (3MA) and 7-methylindole, cause derepression of the trp operon through feedback inhibition of anthranilate synthetase. Tyrosine reverses 3MA or 7-methylindole derepression, apparently by increasing the amount of chorismic acid available to the tryptophan pathway. A mutant isolated on the basis of 3MA resistance (MAR 13) was found to excrete small amounts of chorismic acid and to have a feedback-resistant phenylalanine 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase. Genetic evidence indicates that the mutation conferring 3MA resistance and feedback resistance is very closely linked to aroG, the structural gene for the DAHP synthetase (phe). Since feedback inhibition of anthranilate synthetase by l-tryptophan (or 7MT) is competitive with chorismic acid, alterations in growth conditions (added tyrosine) or in a mutant (MAR 13) which increase the amount of chorismic acid available to the tryptophan pathway result in resistance to 7MT derepression. Owing to this competitive nature of tryptophan feedback inhibition of anthranilate synthetase by chorismic acid, the early pathway apparently serves to exert a regulatory influence on tryptophan biosynthesis.  相似文献   

5.
Experimental autoimmune encephalomyelitis (EAE) is a Th1 and Th17 cell-mediated autoimmune disease of the CNS. IDO and tryptophan metabolites have inhibitory effects on Th1 cells in EAE. For Th17 cells, IDO-mediated tryptophan deprivation and small molecule halofuginone-induced amino acid starvation response were shown to activate general control nonrepressed 2 (GCN2) kinase that directly or indirectly inhibits Th17 cell differentiation. However, it remains unclear whether IDO and tryptophan metabolites impact the Th17 cell response by mechanisms other than the GCN2 kinase pathway. In this article, we show that IDO-deficient mice develop exacerbated EAE with enhanced encephalitogenic Th1 and Th17 cell responses and reduced regulatory T cell (Treg) responses. Administration of the downstream tryptophan metabolite 3-hydroxyanthranillic acid (3-HAA) enhanced the percentage of Tregs, inhibited Th1 and Th17 cells, and ameliorated EAE. We further demonstrate that Th17 cells are less sensitive to direct suppression by 3-HAA than are Th1 cells. 3-HAA treatment in vitro reduced IL-6 production by activated spleen cells and increased expression of TGF-β in dendritic cells (DCs), which correlated with enhanced levels of Tregs, suggesting that 3-HAA-induced Tregs contribute to inhibition of Th17 cells. By using a DC-T cell coculture, we found that 3-HAA-treated DCs expressed higher levels of TGF-β and had properties to induce generation of Tregs from anti-CD3/anti-CD28-stimulated naive CD4(+) T cells. Thus, our data support the hypothesis that IDO induces the generation of Tregs via tryptophan metabolites, such as 3-HAA, which enhances TGF-β expression from DCs and promotes Treg differentiation.  相似文献   

6.
High-molecular-weight lignin was methylated with diazomethane. The lignin (i.e., phenolic lignin) and methylated lignin (i.e., non-phenolic lignin) were mixed with fully bleached softwood pulp. Degradation of the lignin preparations by the white rot fungus Pycnoporus cinnabarinus was studied. After a 3-month incubation with the fungus, over 40% of the non-phenolic lignin and about 70% the phenolic lignin were degraded. The presence of phenolic hydroxyl groups in lignin greatly enhanced the degradation rate of lignin. This study reveals that P. cinnabarinus, an exclusively laccase-producing fungus, is capable of oxidatively degrading both phenolic and non-phenolic lignins. The ability of the fungus to degrade non-phenolic lignin suggests that a laccase/mediator system is involved in the complete degradation of lignin. After the fungal degradation of lignins, the content of carboxylic acids substantially increased for both phenolic and non-phenolic lignins.  相似文献   

7.
Pycnoporus cinnabarinus MUCL39533 was shown to be able to convert p-coumaric acid into p-hydroxybenzaldehyde, a component of high organoleptic note present in natural vanilla aroma. Use of phospholipid-enriched medium led to high-density cultures of P. cinnabarinus, since dry mycelial biomass was increased three-fold as compared to glucose medium. In the presence of phospholipids, 155 mg l(-1) p-hydroxybenzaldehyde was produced as the major compound on culture day 13 with a molar yield of 26%. The degradation pathways of p-coumaric acid were investigated. Based on the different metabolites identified, an oxidative side-chain degradation pathway of p-coumaric acid conversion to p-hydroxybenzoic acid was suggested. This acid was further reduced to p-hydroxybenzaldehyde and p-hydroxybenzyl alcohol, or hydroxylated and reduced to protocatechyl derivatives. Additionally, a reductive pathway of p-coumaric acid with 3-(4-hydroxyphenyl)-propanol as the terminal product occurred.  相似文献   

8.
C Eggert  U Temp    K E Eriksson 《Applied microbiology》1996,62(4):1151-1158
The white rot fungus Pycnoporus cinnabarinus was characterized with respect to its set of extracellular phenoloxidases. Laccase was produced as the predominant extracellular phenoloxidase in conjunction with low amounts of an unusual peroxidase. Neither lignin peroxidase nor manganese peroxidase was detected. Laccase was produced constitutively during primary metabolism. Addition of the most effective inducer, 2,5-xylidine, enhanced laccase production ninefold without altering the isoenzyme pattern of the enzyme. Laccase purified to apparent homogeneity was a single polypeptide having a molecular mass of approximately 81,000 Da, as determined by calibrated gel filtration chromatography, and a carbohydrate content of 9%. The enzyme displayed an unusual behavior on isoelectric focusing gels; the activity was split into one major band (pI, 3.7) and several minor bands of decreasing intensity which appeared at regular, closely spaced intervals toward the alkaline end of the gel. Repeated electrophoresis of the major band under identical conditions produced the same pattern, suggesting that the laccase was secreted as a single acidic isoform with a pI of about 3.7 and that the multiband pattern was an artifact produced by electrophoresis. This appeared to be confirmed by N-terminal amino acid sequencing of the purified enzyme, which yielded a single sequence for the first 21 residues. Spectroscopic analysis indicated a typical laccase active site in the P. cinnabarinus enzyme since all three typical Cu(II)-type centers were identified. Substrate specificity and inhibitor studies also indicated the enzyme to be a typical fungal laccase. The N-terminal amino acid sequence of the P. cinnabarinus laccase showed close homology to the N-terminal sequences determined for laccases from Trametes versicolor, Coriolus hirsutus, and an unidentified basidiomycete, PM1. The principal features of the P. cinnabarinus enzyme system, a single predominant laccase and a lack of lignin- or manganese-type peroxidase, make this organism an interesting model for further studies of possible alternative pathways of lignin degradation by white rot fungi.  相似文献   

9.
The in vivo regulation of intermediate reactions in the pathway of tryptophan synthesis in Neurospora crassa was examined in a double mutant (tr-2, tr-3) which lacks the functions of the first and last enzymes in the pathway from chorismic acid to tryptophan. The double mutant can convert anthranilic acid to indole and indole-3-glycerol, and the production of these indolyl compounds by germinated conidia was used to estimate the activity of the intermediate enzymes in the pathway. Indole-synthesizing activity was maximal in germinated conidia obtained from cultures in which the levels of l-tryptophan were growth-limiting; the formation of this activity was markedly repressed when the levels of l-tryptophan exceeded those required for maximal growth. d-, 5-methyl-dl-, and 6-methyl-dl-tryptophan were less effective than l-tryptophan, and 4-methyl-dl-tryptophan, tryptamine, and indole-3-acetic acid were ineffective in repressing the formation of indole-synthesizing activity; anthranilic acid stimulated the formation of indole-synthesizing activity. Preformed indole-synthesizing activity was strongly and specifically inhibited by low levels of l-tryptophan; several related compounds were ineffective as inhibitors. These results suggest that, in addition to repression, an end product feedback inhibition mechanism is operative on an intermediate enzyme(s) in tryptophan biosynthesis. The relation of these results to other in vivo and in vitro studies and to general aspects of the regulation of tryptophan biosynthesis in N. crassa are discussed.  相似文献   

10.
Lignin is one largely untapped natural resource that can be exploited as a raw material for the bioproduction of value-added chemicals. Meanwhile, the current petroleum-based process for the production of adipic acid faces sustainability challenges. Here we report the successful engineering of Pseudomonas putida KT2440 strain for the direct biosynthesis of adipic acid from lignin-derived aromatics. The devised bio-adipic acid route features an artificial biosynthetic pathway that is connected to the endogenous aromatics degradation pathway of the host at the branching point, 3-ketoadipoyl-CoA, by taking advantage of the unique carbon skeleton of this key intermediate. Studies of the metabolism of 3-ketoadipoyl-CoA led to the discovery of crosstalk between two aromatics degradation pathways in KT2440. This knowledge facilitated the formulation and implementation of metabolic engineering strategies to optimize the carbon flux into the biosynthesis of adipic acid. By optimizing pathway expression and cultivation conditions, an engineered strain AA-1 produced adipic acid at 0.76 g/L and 18.4% molar yield under shake-flask conditions and 2.5 g/L and 17.4% molar yield under fermenter-controlled conditions from common aromatics that can be derived from lignin. This represents the first example of the direct adipic acid production from model compounds of lignin depolymerization.  相似文献   

11.
Pseudomonas fluorescens strain CHA0 is an effective biocontrol agent against soil-borne fungal plant pathogens. In this study, indole-3-acetic acid (IAA) biosynthesis in strain CHA0 was investigated. Two key enzyme activities were found to be involved: tryptophan side chain oxidase (TSO) and tryptophan transaminase. TSO was induced in the stationary growth phase. By fractionation of a cell extract of strain CHA0 on DEAE-Sepharose, two distinct peaks of constitutive tryptophan transaminase activity were detected. A pathway leading from tryptophan to IAA via indole-3-acetamide, which occurs in Pseudomonas syringae subsp. savastanoi, was not present in strain CHA0. IAA synthesis accounted for less than or equal to 1.5% of exogenous tryptophan consumed by resting cells of strain CHA0, indicating that the bulk of tryptophan was catabolized via yet another pathway involving anthranilic acid as an intermediate. Strain CHA750, a mutant lacking TSO activity, was obtained after Tn5 mutagenesis of strain CHA0. In liquid cultures (pH 6.8) supplemented with 10 mM-L-tryptophan, growing cells of strains CHA0 and CHA750 synthesized the same amount of IAA, presumably using the tryptophan transaminase pathway. In contrast, resting cells of strain CHA750 produced five times less IAA in a buffer (pH 6.0) containing 1 mM-L-tryptophan than did resting cells of the wild-type, illustrating the major contribution of TSO to IAA synthesis under these conditions. In artificial soils at pH approximately 7 or pH approximately 6, both strains had similar abilities to suppress take-all disease of wheat or black root rot of tobacco. This suggests that TSO-dependent IAA synthesis is not essential for disease suppression.  相似文献   

12.
The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the biotrophic and necrotrophic phases of infection. The amounts of IAA produced per fungal biomass were highest during the biotrophic phase. IAA production by this plant pathogen might be important during early stages of plant colonization.  相似文献   

13.
目的:利用重组大肠杆菌全细胞转化色氨酸生产IAA.方法:在大肠杆菌胞内构建两条全新的IAA合成途径,即吲哚-3-乙酰胺(indole-3-acetamide,IAM)途径和色胺(tryptamine,TRP)途径.结果:IAM途径涉及两个酶,分别是色氨酸-2-单加氧酶(IAAM)和酰胺酶(AMI1),构建好的重组大肠杆...  相似文献   

14.
We examined a novel rice mutant, Fukei 71 (Oryza sativa L.), for alterations in the levels of hydroxycinnamoyl esters that are linked to cell wall polysaccharides and lignin units. In this mutant, a recessive mutation at a single locus caused the collapse of parenchyma cells in the internodes. Light microscopy revealed that the abnormal walls of internode parenchyma cells of Fukei 71 were stained by the M?ule reaction, which is specific for syringyl units in phenolic compounds. These walls were not stained by Wiesner's reagent (phloroglucinol-HCl), which reacts cinnamaldehyde in lignin. Levels of p-coumaric acid (PCA) and ferulic acid (FA) were apparently elevated in the abnormal tissue of the mutant. Western blotting analysis with antibodies specific for phenylalanine ammonia-lyase (PAL) revealed higher levels of PAL in the abnormal parenchyma tissue of Fukei 71 than in the parenchyma tissue of the parent cultivar Fujiminori. These results and the observation that PAL was produced at a greatly elevated level indicated that the phenylpropanoid pathway that leads to the biosynthesis of polysaccharide-linked FA and PCA was abnormally activated in the irregularly shaped and collapsed internode parenchyma cells, in which the biosynthesis of lignin is normally repressed.  相似文献   

15.
Phanerochaete chrysosporium produces two classes of extracellular heme proteins, designated lignin peroxidases and manganese peroxidases, that play a key role in lignin degradation. In this study we isolated and characterized a lignin peroxidase-negative mutant (lip mutant) that showed 16% of the ligninolytic activity (14C-labeled synthetic lignin----14CO2) exhibited by the wild type. The lip mutant did not produce detectable levels of lignin peroxidase, whereas the wild type, under identical conditions, produced 96 U of lignin peroxidase per liter. Both the wild type and the mutant produced comparable levels of manganese peroxidase and glucose oxidase, a key H2O2-generating secondary metabolic enzyme in P. chrysosporium. Fast protein liquid chromatographic analysis of the concentrated extracellular fluid of the lip mutant confirmed that it produced only heme proteins with manganese peroxidase activity but no detectable lignin peroxidase activity, whereas both lignin peroxidase and manganese peroxidase activities were produced by the wild type. The lip mutant appears to be a regulatory mutant that is defective in the production of all the lignin peroxidases.  相似文献   

16.
The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the biotrophic and necrotrophic phases of infection. The amounts of IAA produced per fungal biomass were highest during the biotrophic phase. IAA production by this plant pathogen might be important during early stages of plant colonization.  相似文献   

17.
拟南芥色氨酸与吲哚乙酸生物合成的研究进展   总被引:1,自引:0,他引:1  
拟南芥色氨酸生物合成途径的研究已逐渐成为植物分子生物学家了解植物基因结构和表达调控最主要的模式系统之一。到目前为止,编码拟南芥色氨酸合成途径的七种酶蛋白的基因已经全部被克隆,并进行了不同程度的分子生物学研究。长期以来,色氨酸一直被认为是植物生长素吲哚乙酸(IAA)生物合成(从头合成)的前体物,但近年来人们发现生长素合成的非色氨酸途径可能是其在植物中生物合成的主要途径。植物在不同的发育阶段可能采用不同的方式合成IAA。  相似文献   

18.
Microbial biosynthesis of fatty acid like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Wild type E. coli strains produce fatty acids mainly for the biosynthesis of lipids and cell membranes and do not accumulate free fatty acids as intermediates in lipid biosynthesis. However, free fatty acids can be produced by breaking the fatty acid elongation through the overexpression of an acyl-ACP thioesterase. Since acetyl-CoA might be an important factor for fatty acid synthesis (acetate formation pathways are the main competitive pathways in consuming acetyl-CoA or pyruvate, a precursor of acetyl-CoA), and the long chain fatty acid CoA-ligase (FadD) plays a pivotal role in the transport and activation of exogenous fatty acids prior to their subsequent degradation, we examined the composition and the secretion of the free fatty acids in four different strains including the wild type MG1655, a mutant strain with inactivation of the fatty acid beta-oxidation pathway (fadD mutant (ML103)), and mutant strains with inactivation of the two major acetate production pathways (an ack-pta (acetate kinase/phosphotransacetylase), poxB (pyruvate oxidase) double mutant (ML112)) and a fadD, ack-pta, poxB triple mutant (ML115). The engineered E. coli cells expressing acyl-ACP thioesterase with glucose yield is higher than 40% of theoretical yield. Compared to MG1655(pXZ18) and ML103(pXZ18), acetate forming pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar quantity of total free fatty acids, which indicated that acetyl-CoA availability does not appear to be limiting factor for fatty acid production in these strains. However, these strains did show significant differences in the composition of free fatty acids. Different from MG1655(pXZ18) and ML103(pXZ18), acetate formation pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar level of C14, C16:1 and C16 free fatty acids, and the free fatty acid compositions of both strains did not change significantly with time. In addition, the strains bearing the fadD mutation showed significant differences in the quantities of free fatty acids found in the broth. Finally, we examined two potential screening methods for selecting and isolating high free fatty acids producing cells.  相似文献   

19.
Plant phytohormone, Indole-3-acetic acid (IAA ), is synthesized by tryptophan (trp) dependent and independent pathway. Here we report that tryptophan auxotroph mutants completely suppressed the abnormalities of auxin over production mutant, superroot2. SUR2 is considered to modulate Trp dependent pathway, resulting IAA accumulation in Arabidopsis. Tryptophan auxotroph mutants showed hyper-sensitivity to the auxin polar transport inhibitor, NPA, on the phenotype of reduced gravitropism. These results together with the results of histochemical analyses, tryptophan auxotroph mutants seem to have a complete defect in Trp dependent IAA biosynthesis pathway, and it is also suggested that the Trp dependent pathway is responsible for the normal root gravitropism.Key words: Auxin, Trp dependent pathway, trp mutants, sur2, arabidopsis  相似文献   

20.
木质素生物合成及其基因工程研究进展   总被引:29,自引:0,他引:29  
木质素是维管植物的一种主要组成成分,是植物适应陆地环境的重要特征之一.然而,它的存在严重影响植物材料在造纸工业与畜牧业生产中的应用,因此其生物合成调控的研究引起人们极大关注.随着各种分析技术和手段的提高,该领域研究取得了突破性的进展.该文重点阐述这些新进展,同时较系统地介绍利用基因工程技术调控木质素生物合成的研究成果,并提出一些关于更有效地利用生物技术手段改良造纸资源植物品质的建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号