首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Autophagy is a cellular response triggered by the lack of nutrients, especially the absence of amino acids. Autophagy is defined by the formation of double membrane structures, called autophagosomes, that sequester cytoplasm, long-lived proteins and protein aggregates, defective organelles, and even viruses or bacteria. Autophagosomes eventually fuse with lysosomes leading to bulk degradation of their content, with the produced nutrients being recycled back to the cytoplasm. Therefore, autophagy is crucial for cell homeostasis, and dysregulation of autophagy can lead to disease, most notably neurodegeneration, ageing and cancer.Autophagosome formation is a very elaborate process, for which cells have allocated a specific group of proteins, called the core autophagy machinery. The core autophagy machinery is functionally complemented by additional proteins involved in diverse cellular processes, e.g. in membrane trafficking, in mitochondrial and lysosomal biology. Coordination of these proteins for the formation and degradation of autophagosomes constitutes the highly dynamic and sophisticated response of autophagy. Live cell imaging allows one to follow the molecular contribution of each autophagy-related protein down to the level of a single autophagosome formation event and in real time, therefore this technique offers a high temporal and spatial resolution.Here we use a cell line stably expressing GFP-DFCP1, to establish a spatial and temporal context for our analysis. DFCP1 marks omegasomes, which are precursor structures leading to autophagosomes formation. A protein of interest (POI) can be marked with either a red or cyan fluorescent tag. Different organelles, like the ER, mitochondria and lysosomes, are all involved in different steps of autophagosome formation, and can be marked using a specific tracker dye. Time-lapse microscopy of autophagy in this experimental set up, allows information to be extracted about the fourth dimension, i.e. time. Hence we can follow the contribution of the POI to autophagy in space and time.  相似文献   

4.
The embryonic spinal cord consists of cycling neural progenitor cells that give rise to a large percentage of the neuronal and glial cells of the central nervous system (CNS). Although much is known about the molecular mechanisms that pattern the spinal cord and elicit neuronal differentiation1, 2, we lack a deep understanding of these early events at the level of cell behavior. It is thus critical to study the behavior of neural progenitors in real time as they undergo neurogenesis.In the past, real-time imaging of early embryonic tissue has been limited by cell/tissue viability in culture as well as the phototoxic effects of fluorescent imaging. Here we present a novel assay for imaging such tissue for long periods of time, utilizing a novel ex vivo slice culture protocol and wide-field fluorescence microscopy (Fig. 1). This approach achieves long-term time-lapse monitoring of chick embryonic spinal cord progenitor cells with high spatial and temporal resolution.This assay may be modified to image a range of embryonic tissues3, 4 In addition to the observation of cellular and sub-cellular behaviors, the development of novel and highly sensitive reporters for gene activity (for example, Notch signaling5) makes this assay a powerful tool with which to understand how signaling regulates cell behavior during embryonic development.  相似文献   

5.
Numerous cellular responses are reportedly regulated by blue light in gametophytes of lower plants; however, the molecular mechanisms of these responses are not known. Here, we report the isolation of two blue light photoreceptor genes, designated cryptochrome genes 4 and 5 (CRY4 and CRY5), from the fern Adiantum capillus-veneris. Because previously we identified three cryptochrome genes, this fern cryptochrome gene family of five members is the largest identified to date in plants. The deduced amino acid sequences of the five genes show remarkable similarities with previously identified cryptochromes as well as class I photolyases. Like the other plant cryptochromes, none of the cryptochromes of this fern possesses photolyase activity. RNA gel blot analysis and competitive polymerase chain reaction analysis indicate that the expression of the newly identified CRY4 and CRY5 genes is regulated by light and is under phytochrome control. The intracellular distribution of reporter beta-glucuronidase (GUS)-CRY fusion proteins indicates that GUS-CRY3 and GUS-CRY4 localize in fern gametophyte nuclei. The nuclear localization of GUS-CRY3 is regulated in a light-dependent manner. Together with our physiological knowledge, these results suggest that CRY3, CRY4, or both might be the photoreceptor that mediates inhibition of spore germination by blue light.  相似文献   

6.
超分辨显微成像技术(super-resolution microscopy,SRM)可以绕过光学衍射极限对成像分辨率的限制,让以前观察不到的纳米级结构实现可视化,这一重大研究进展推动了现代生命科学和生物医学研究的进步与发展.细胞是生物体的基本组成单位,对活细胞内部的细微结构和动力学过程进行研究是掌握生命本质必不可少的途...  相似文献   

7.
Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread.  相似文献   

8.
We have developed a novel method for multi-color spectral FRET analysis which is used to study a system of three independent FRET-based molecular sensors composed of the combinations of only three fluorescent proteins. This method is made possible by a novel routine for computing the 3-D excitation/emission spectral fingerprint of FRET from reference measurements of the donor and acceptor alone. By unmixing the 3D spectrum of the FRET sample, the total relative concentrations of the fluorophores and their scaled FRET efficiencies are directly measured, from which apparent FRET efficiencies can be computed. If the FRET sample is composed of intramolecular FRET sensors it is possible to determine the total relative concentration of the sensors and then estimate absolute FRET efficiency of each sensor. Using multiple tandem constructs with fixed FRET efficiency as well as FRET-based calcium sensors with novel fluorescent protein combinations we demonstrate that the computed FRET efficiencies are accurate and changes in these quantities occur without crosstalk. We provide an example of this method’s potential by demonstrating simultaneous imaging of spatially colocalized changes in [Ca2+], [cAMP], and PKA activity.  相似文献   

9.
The proper elimination of unwanted or aberrant cells through apoptosis and subsequent phagocytosis (apoptotic cell clearance) is crucial for normal development in all metazoan organisms. Apoptotic cell clearance is a highly dynamic process intimately associated with cell death; unengulfed apoptotic cells are barely seen in vivo under normal conditions. In order to understand the different steps of apoptotic cell clearance and to compare ''professional'' phagocytes - macrophages and dendritic cells to ''non-professional'' - tissue-resident neighboring cells, in vivo live imaging of the process is extremely valuable. Here we describe a protocol for studying apoptotic cell clearance in live Drosophila embryos. To follow the dynamics of different steps in phagocytosis we use specific markers for apoptotic cells and phagocytes. In addition, we can monitor two phagocyte systems in parallel: ''professional'' macrophages and ''semi-professional'' glia in the developing central nervous system (CNS). The method described here employs the Drosophila embryo as an excellent model for real time studies of apoptotic cell clearance.  相似文献   

10.
Homeostatic maintenance of epithelial tissues requires the continual removal of damaged cells without disrupting barrier function. Our studies have found that dying cells send signals to their live neighbors to form and contract a ring of actin and myosin that ejects it out from the epithelial sheet while closing any gaps that might have resulted from its exit, a process termed cell extrusion1. The optical clarity of developing zebrafish provides an excellent system to visualize extrusion in living epithelia. Here we describe a method to induce and image extrusion in the larval zebrafish epidermis. To visualize extrusion, we inject a red fluorescent protein labeled probe for F-actin into one-cell stage transgenic zebrafish embryos expressing green fluorescent protein in the epidermis and induce apoptosis by addition of G418 to larvae. We then use time-lapse imaging on a spinning disc confocal microscope to observe actin dynamics and epithelial cell behaviors during the process of apoptotic cell extrusion. This approach allows us to investigate the extrusion process in live epithelia and will provide an avenue to study disease states caused by the failure to eliminate apoptotic cells.Download video file.(59M, mov)  相似文献   

11.
12.
Philips MR 《Molecular cell》2004,15(2):168-169
Subcellular compartmentalization is an emerging paradigm in signaling pathways including the Ras/MAPK pathway. In a recent issue of Developmental Cell, Torii et al. (2004) characterize a new MAPK scaffold, Sef, that resides on the Golgi apparatus, binds active MEK/ERK complexes, and permits signaling to cytosolic substrates but not nuclear targets.  相似文献   

13.
Double-strand breaks (DSBs) are the most deleterious DNA lesions a cell can encounter. If left unrepaired, DSBs harbor great potential to generate mutations and chromosomal aberrations1. To prevent this trauma from catalyzing genomic instability, it is crucial for cells to detect DSBs, activate the DNA damage response (DDR), and repair the DNA. When stimulated, the DDR works to preserve genomic integrity by triggering cell cycle arrest to allow for repair to take place or force the cell to undergo apoptosis. The predominant mechanisms of DSB repair occur through nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR) (reviewed in2). There are many proteins whose activities must be precisely orchestrated for the DDR to function properly. Herein, we describe a method for 2- and 3-dimensional (D) visualization of one of these proteins, 53BP1.The p53-binding protein 1 (53BP1) localizes to areas of DSBs by binding to modified histones3,4, forming foci within 5-15 minutes5. The histone modifications and recruitment of 53BP1 and other DDR proteins to DSB sites are believed to facilitate the structural rearrangement of chromatin around areas of damage and contribute to DNA repair6. Beyond direct participation in repair, additional roles have been described for 53BP1 in the DDR, such as regulating an intra-S checkpoint, a G2/M checkpoint, and activating downstream DDR proteins7-9. Recently, it was discovered that 53BP1 does not form foci in response to DNA damage induced during mitosis, instead waiting for cells to enter G1 before localizing to the vicinity of DSBs6. DDR proteins such as 53BP1 have been found to associate with mitotic structures (such as kinetochores) during the progression through mitosis10.In this protocol we describe the use of 2- and 3-D live cell imaging to visualize the formation of 53BP1 foci in response to the DNA damaging agent camptothecin (CPT), as well as 53BP1''s behavior during mitosis. Camptothecin is a topoisomerase I inhibitor that primarily causes DSBs during DNA replication. To accomplish this, we used a previously described 53BP1-mCherry fluorescent fusion protein construct consisting of a 53BP1 protein domain able to bind DSBs11. In addition, we used a histone H2B-GFP fluorescent fusion protein construct able to monitor chromatin dynamics throughout the cell cycle but in particular during mitosis12. Live cell imaging in multiple dimensions is an excellent tool to deepen our understanding of the function of DDR proteins in eukaryotic cells.  相似文献   

14.
15.
International Journal of Peptide Research and Therapeutics - Cell penetrating peptides (CPPs) are unique molecules with the ability to pass through biological membranes as they carry their cargoes...  相似文献   

16.
17.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are essential components of pathways through which signals received at membrane receptors are converted into specific changes in protein function and gene expression. As with other members of the mitogen-activated protein (MAP) kinase family, ERK1 and ERK2 are activated by phosphorylations catalyzed by dual-specificity protein kinases known as MAP/ERK kinases (MEKs). MEKs exhibit stringent specificity for individual MAP kinases. Indeed, MEK1 and MEK2 are the only known activators of ERK1 and ERK2. ERK2 small middle dotMEK1/2 complexes can be detected in vitro and in vivo. The biochemical nature of such complexes and their role in MAP kinase signaling are under investigation. This report describes the use of a yeast two-hybrid screen to identify point mutations in ERK2 that impair its interaction with MEK1/2, yet do not alter its interactions with other proteins. ERK2 residues identified in this screen are on the surface of the C-terminal domain of the kinase, either within or immediately preceding alpha-helix G, or within the MAP kinase insert. Some mutations identified in this manner impaired the two-hybrid interaction of ERK2 with both MEK1 and MEK2, whereas others had a predominant effect on the interaction with either MEK1 or MEK2. Mutant ERK2 proteins displayed reduced activation in HEK293 cells following epidermal growth factor treatment, consistent with their impaired interaction with MEK1/2. However, ERK2 proteins containing MEK-specific mutations retained kinase activity, and were similar to wild type ERK2 in their activation following overexpression of constitutively active MEK1. Unlike wild type ERK2, proteins containing MEK-specific point mutations were constitutively localized in the nucleus, even in the presence of overexpressed MEK1. These data suggest an essential role for the MAP kinase insert and residues within or just preceding alpha-helix G in the interaction of ERK2 with MEK1/2.  相似文献   

18.
在脑缺血病灶中,中心区神经元坏死为主,周围以缺血半暗带凋亡为主,抑制半暗带细胞的凋亡,可以减少细胞的死亡和脑梗死的面积,因此改善半暗带是治疗脑卒中的关键环节.目前发现MAPK分布于整个中枢神经系统中,MEK/ERK信号通路参与细胞生长、发育、细胞抗凋亡等过程,在脑缺血再灌注损伤过程中有MEK/ERK信号通路的参与,MEK/ERK通路通过影响Bcl-2家族成员的活化和表达调控内源性凋亡途径,ERK通过对细胞周期的调控,抑制胶质细胞大量活化和过度增殖,减少了有害因子并改善局部微循环,从而减少神经元的凋亡.可能为脑血管的防治开辟一条新的途径.本文就MEK/ERK信号通路的结构特点与脑缺血再灌注损伤相关作用机制作一综述.  相似文献   

19.
细胞作为生命体基本的结构和功能单元,在生物、医学等领域有着非常重要的研究意义。随着现代科学和技术的发展,科学家们借助电镜对细胞以及细胞器的空间结构已经有非常清晰的认识,但是对它们的功能以及细胞之间的相互作用却了解得非常少,而这恰恰又是疾病治疗和药物开发亟需了解的信息,因此对离体活细胞(简称活细胞)和活体生物组织细胞(简称活体细胞)中亚细胞器的研究变得非常重要。然而细胞中许多细胞器的结构在纳米量级,传统的光学成像技术由于受到光学衍射极限的限制是无法观察到纳米量级的生物结构,因此光学超分辨成像技术是目前研究亚细胞器结构和功能的有效工具。在所有光学超分辨显微技术中,受激发射损耗显微术(stimulated emission depletionmicroscopy,STED)由于具有实时成像、三维超分辨和断层成像的能力,非常适合用于纳米尺度的活细胞和活体细胞成像研究,而且STED超分辨成像技术经过近几十年的发展,已经广泛用于活细胞甚至活体小鼠细胞的超分辨动态观测。本文总结了近年来活细胞和活体小鼠神经元细胞等领域STED超分辨成像的研究进展,介绍了用于活细胞和活体细胞STED超分辨成像的荧光染料...  相似文献   

20.
The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号