首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Microsatellite markers have been extensively utilised in the leguminosae for genome mapping and identifying major loci governing traits of interest for eventual marker-assisted selection (MAS). The lack of available lentil-specific microsatellite sequences and gene-based markers instigated the mining and transfer of expressed sequence tag simple sequence repeat (EST-SSR)/SSR sequences from the model genome Medicago truncatula, to enrich an existing intraspecific lentil genetic map. A total of 196 markers, including new 15 M. truncatula EST-SSR/SSR, were mapped using a population of 94 F5 recombinant inbred lines produced from a cross between cv. Northfield (ILL5588)?×?cv. Digger (ILL5722) and clustered into 11 linkage groups (LG) covering 1156.4?cM. Subsequently, the size and effects of quantitative trait loci (QTL) conditioning Ascochyta lentis resistance at seedling and pod/maturity stages were characterised and compared. Three QTL were detected for seedling resistance on LG1 and LG9 and a further three were detected for pod/maturity resistance on LG1, LG4 and LG5. Together, these accounted for 34 and 61% of the total estimated phenotypic variation, respectively, and demonstrated that resistance at the different growth stages is potentially conditioned by different genomic regions. The flanking markers identified may be useful for MAS and for the future pyramiding of potentially different resistance genes into elite backgrounds that are resistant throughout the cropping season.  相似文献   

3.
Microsatellites have currently become the markers of choice for molecular mapping and marker-assisted selection for key traits such as disease resistance in many crop species. We report here on the mapping of microsatellites which had been identified from a genomic library of lentil (Lens culinaris Medik.). The majority of microsatellite-bearing clones contained imperfect di-nucleotide repeats. A total of 41 microsatellite and 45 amplified fragment length polymorphism (AFLP) markers were mapped on 86 recombinant inbred lines derived from the cross ILL 5588 × L 692-16-1(s), which had been previously used for the construction of a random amplified polymorphic DNA and AFLP linkage map. Since ILL 5588 was resistant to fusarium vascular wilt caused by the fungus Fusarium oxysporum Shlecht. Emend. Snyder & Hansen f.sp. lentis Vasud. & Srini., the recombinant inbreds were segregating for this character. The resulting map contained 283 markers covering about 751 cM, with an average marker distance of 2.6 cM. The fusarium vascular wilt resistance was localized on linkage group 6, and this resistance gene was flanked by microsatellite marker SSR59-2B and AFLP marker p17m30710 at distances of 8.0 cM and 3.5 cM, respectively. These markers are the most closely linked ones known to date for this agronomically important Fw gene. Using the information obtained in this investigation, the development and mapping of microsatellite markers in the existing map of lentil could be substantially increased, thereby providing the possibility for the future localization of various loci of agronomic interest.  相似文献   

4.
Lentil (Lens culinaris ssp. culinaris), is a self-pollinating diploid (2n?=?2x?=?14), cool-season legume crop and is consumed worldwide as a rich source of protein (~24.0%), largely in vegetarian diets. Here we report development of a genetic linkage map of Lens using 114 F2 plants derived from the intersubspecific cross between L 830 and ILWL 77. RAPD (random amplified polymorphic DNA) primers revealed more polymorphism than ISSR (intersimple sequence repeat) and SSR (simple sequence repeat) markers. The highest proportion (30.72%) of segregation distortion was observed in RAPD markers. Of the 235 markers (34 SSR, 9 ISSR and 192 RAPD) used in the mapping study, 199 (28 SSRs, 9 ISSRs and 162 RAPDs) were mapped into 11 linkage groups (LGs), varying between 17.3 and 433.8 cM and covering 3843.4 cM, with an average marker spacing of 19.3 cM. Linkage analysis revealed nine major groups with 15 or more markers each and two small LGs with two markers each, and 36 unlinked markers. The study reported assigning of 11 new SSRs on the linkage map. Of the 66 markers with aberrant segregation, 14 were unlinked and the remaining 52 were mapped. ISSR and RAPD markers were found to be useful in map construction and saturation. The current map represents maximum coverage of lentil genome and could be used for identification of QTL regions linked to agronomic traits, and for marker-assisted selection in lentil.  相似文献   

5.
Summary A genetic linkage map of lentil comprising 333 centimorgans (cM) was constructed from 20 restriction fragment length, 8 isozyme, and 6 morphological markers segregating in a single interspecific cross (Lens culinaris × L. orientalis). Because the genotypes at marker loci were determined for about 66 F2 plants, linkages are only reported for estimates of recombination less than 30 cM. Probes for identification of restriction fragment length polymorphisms (RFLPs) were isolated from a cDNA and EcoRI and PstI partial genomic libraries of lentil. The cDNA library gave the highest frequency of relatively low-copy-number probes. The cDNAs were about twice as efficient, relative to random genomic fragments, in RFLP detection per probe. Nine markers showed significant deviations from the expected F2 ratios and tended to show a predominance of alleles from the cultigen. Assuming a genome size of 10 Morgans, 50% of the lentil genome could be linked within 10 cM of the 34 markers and the map is of sufficient size to attempt mapping of quantitative trait loci.  相似文献   

6.
A Lens map was developed based on the segregational analysis of five kinds of molecular and morphological genetic markers in 113 F2 plants obtained from a single hybrid of Lens culinaris ssp. culinaris × L. c. ssp. orientalis. A total of 200 markers were used on the F2 population, including 71 RAPDs, 39 ISSRs, 83 AFLPs, two SSRs and five morphological loci. The AFLP technique generated more polymorphic markers than any of the others, although AFLP markers also showed the highest proportion (29.1%) of distorted segregation. At a LOD score of 3.0, 161 markers were grouped into ten linkage groups covering 2,172.4 cM, with an average distance between markers of 15.87 cM. There were six large groups with 12 or more markers each, and four small groups with two or three markers each. Thirty-nine markers were unlinked. A tendency for markers to cluster in the central regions of large linkage groups was observed. Likewise, clusters of AFLP, ISSR or RAPD markers were also observed in some linkage groups, although RAPD markers were more evenly spaced along the linkage groups. In addition, two SSR, three RAPD and one ISSR markers segregated as codominant. ISSR markers are valuable tools for Lens genetic mapping and they have a high potential in the generation of saturated Lens maps.Communicated by H.C. Becker  相似文献   

7.
We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. The map comprises 382 loci in 20 major linkage groups, two triplets, three pairs and 11 unlinked loci and is 1,846 cM in length. The map was generated from the segregation of 163 RFLP markers, 135 gene-based PCR markers, 75 AFLP and 4 AFLP-derived SCAR markers in a mapping population of 93 recombinant inbred lines, derived from a cross between domesticated and wild-type parents. This enabled the mapping of five major genes controlling key domestication traits in L. angustifolius. Using marker sequence data, the L. angustifolius genetic map was compared to the partially completed M. truncatula genome sequence. We found evidence of conserved synteny in some regions of the genome despite the wide evolutionary distance between these legume species. We also found new evidence of widespread duplication within the L. angustifolius genome.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorised users.  相似文献   

8.
A genetic map constructed from a population segregating for a trait of interest is required for QTL identification. The goal of this study was to construct a molecular map of tetraploid alfalfa (Medicago sativa.) using simple sequence repeat (SSR) markers derived primarily from expressed sequence tags (ESTs) and bacterial artificial chromosome (BAC) inserts of M. truncatula. This map will be used for the identification of drought tolerance QTL in alfalfa. Two first generation backcross populations were constructed from a cross between a water-use efficient, M. sativa subsp. falcata genotype and a low water-use efficient M. sativa subsp. sativa genotype. The two parents and their F1 were screened with 1680 primer pairs designed to amplify SSRs, and 605 single dose alleles (SDAs) were amplified. In the F1, 351 SDAs from 256 loci were mapped to 41 linkage groups. SDAs not inherited by the F1, but transmitted through the recurrent parents and segregating in the backcross populations, were mapped to 43 linkage groups, and 44 of these loci were incorporated into the composite maps. Homologous linkage groups were joined to form eight composite linkage groups representing the eight chromosomes of M. sativa. The composite maps consist of eight composite linkage groups with 243 SDAs from M. truncatula EST sequences, 38 SDAs from M. truncatula BAC clone sequences, and five SDAs from alfalfa genomic SSRs. The total composite map length is 624 cM, with average marker density per composite linkage group ranging from 1.5 to 4.4 cM, and an overall average density of 2.2 cM. Segregation distortion was 10%, and distorted loci tended to cluster on individual homologues of several linkage groups. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
Seed weight and seed size both are quantitative traits and have been considered as important components of grain yield, thus identification of quantitative trait loci (QTL) for seed traits in lentil (Lens culinaris) would be beneficial for the improvement of grain yield. Hence the main objective of this study was to identify QTLs for seed traits using an intraspecific mapping population derived from a cross between L. culinaris cv. Precoz (seed weight-5.1g, seed size-5.7mm) and L. culinaris cv. L830 (seed weight-2.2g, seed size-4mm) comprising 126 F8-RILs. For this, two microsatellite genomic libraries enriched for (GA/CT) and (GAA/CTT) motif were constructed which resulted in the development of 501 new genomic SSR markers. Six hundred forty seven SSR markers (including 146 previously published) were screened for parental polymorphism and 219 (33.8%) were found to be polymorphic among the parents. Of these 216 were mapped on seven linkage groups at LOD4.0 spanning 1183.7cM with an average marker density of 5.48cM. Phenotypic data from the RILs was used to identify QTLs for the seed weight and seed size traits by single marker analysis (SMA) followed by composite interval mapping (CIM) which resulted in one QTL each for the 2 traits (qSW and qSS) that were co-localized on LG4 and explained 48.4% and 27.5% of phenotypic variance respectively. The current study would serve as a strong foundation for further validation and fine mapping for utilization in lentil breeding programs.  相似文献   

10.
11.
Lentil (Lens culinaris Medik.) is an economically important grain legume, yet the genetic and genomic resources remain largely uncharacterized and unexploited in this crop. Microsatellites have become markers of choice for crop improvement applications. Hence, simple sequence repeat (SSR) markers were developed for lentil through the construction of genomic library enriched for GA/CT motifs. As a result 122 functional SSR primer pairs were developed from 151 microsatellite loci and validated in L. culinaris cv. Precoz. Thirty three SSR markers were utilized for the analysis of genetic relationships between cultivated and wild species of Lens and related legumes. A total of 123 alleles were amplified at 33 loci ranging from 2–5 alleles with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus. Varied levels of cross genera transferability were obtained ranging from 69.70 % across Pisum sativum to 12.12 % across Vigna radiata. The UPGMA based dendrogram was able to establish the uniqueness of each genotype and grouped them into two major clusters clearly resolving the genetic relationships within lentil and related species. The new set of SSR markers reported here were efficient and highly polymorphic and would add to the existing repertoire of lentil SSR markers to be utilized in molecular breeding. Moreover, the improved knowledge about intra- and inter-specific genetic relationships would facilitate germplasm utilization for lentil improvement.  相似文献   

12.
Summary Thirty accessions of domesticated (Lens culinaris ssp. culinaris) and wild (L. culinaris ssp. orientalis, L. culinaris ssp. odemensis, L. nigricans ssp. ervoides and L. nigricans ssp. nigricans) lentil were evaluated for restriction fragment length polymorphisms (RFLPs) using ten relative low-copy-number probes selected from partial genomic and cDNA libraries of lentil. Nei's average gene diversity was used as a measure of genetic variability for restriction fragment lengths within subspecies and a dendrogram was constructed from genetic distance estimates between subspecies. The wild lentils L. culinaris ssp. orientalis and L. culinaris ssp. odemensis showed the greatest variability for restriction fragment lengths and were closely positioned to domesticated lentil in the dendrogram. Little variability for restriction fragment lengths was observed within accessions of L. nigricans ssp. ervoides and L. nigricans ssp. nigricans. This observation is consistent with a previously published proposal that nigricans may have been independently domesticated. Estimates of genetic variability based on RFLPs tended to be greater than estimates from isozymes.  相似文献   

13.
We describe the construction of a reference genetic linkage map for the Brassica A genome, which will form the backbone for anchoring sequence contigs for the Multinational Brassica rapa Genome Sequencing Project. Seventy-eight doubled haploid lines derived from anther culture of the F1 of a cross between two diverse Chinese cabbage (B. rapa ssp. pekinensis) inbred lines, ‘Chiifu-401-42’ (C) and ‘Kenshin-402-43’ (K) were used to construct the map. The map comprises a total of 556 markers, including 278 AFLP, 235 SSR, 25 RAPD and 18 ESTP, STS and CAPS markers. Ten linkage groups were identified and designated as R1–R10 through alignment and orientation using SSR markers in common with existing B. napus reference linkage maps. The total length of the linkage map was 1,182 cM with an average interval of 2.83 cM between adjacent loci. The length of linkage groups ranged from 81 to 161 cM for R04 and R06, respectively. The use of 235 SSR markers allowed us to align the A-genome chromosomes of B. napus with those of B. rapa ssp. pekinensis. The development of this map is vital to the integration of genome sequence and genetic information and will enable the international research community to share resources and data for the improvement of B. rapa and other cultivated Brassica species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Allotetraploid white clover (Trifolium repens L.), a cool-season perennial legume used extensively as forage for livestock, is an important target for marker-assisted breeding. A genetic linkage map of white clover was constructed using simple sequence repeat (SSR) markers based on sequences from several Trifolieae species, including white clover, red clover (T. pratense L.), Medicago truncatula (Gaertn.) and soybean (Glycine max L.). An F1 population consisting of 179 individuals, from a cross between two highly heterozygous genotypes, GA43 and Southern Regional Virus Resistant, was used for genetic mapping. A total of 1,571 SSR markers were screened for amplification and polymorphism using DNA from two parents and 14 F1s of the mapping population. The map consists of 415 loci amplified from 343 SSR primer pairs, including 83 from white clover, 181 from red clover, 77 from M. truncatula, and two from soybean. Linkage groups for all eight homoeologous chromosome pairs of allotetraploid white clover were detected. Map length was estimated at 1,877 cM with 87% genome coverage. Map density was approximately 5 cM per locus. Segregation distortion was detected in six segments of the genome (homoeologous groups A1, A2, B1, B2, C1, and D1). A comparison of map locations of markers originating from white clover, red clover, and alfalfa (M. sativa L.) revealed putative macro-colinearity between the three Trifolieae species. This map can be used to link quantitative trait loci with SSR markers, and accelerate the improvement of white clover by marker-assisted selection and breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
We report the first genetic linkage map of white lupin (Lupinus albus L.). An F8 recombinant inbred line population developed from Kiev mutant x P27174 was mapped with 220 amplified fragment length polymorphism and 105 gene-based markers. The genetic map consists of 28 main linkage groups (LGs) that varied in length from 22.7 cM to 246.5 cM and spanned a total length of 2951 cM. There were seven additional pairs and 15 unlinked markers, and 12.8% of markers showed segregation distortion at P < 0.05. Syntenic relationships between Medicago truncatula and L. albus were complex. Forty-five orthologous markers that mapped between M. truncatula and L. albus identified 17 small syntenic blocks, and each M. truncatula chromosome aligned to between one and six syntenic blocks in L. albus. Genetic mapping of three important traits: anthracnose resistance, flowering time, and alkaloid content allowed loci governing these traits to be defined. Two quantitative trait loci (QTLs) with significant effects were identified for anthracnose resistance on LG4 and LG17, and two QTLs were detected for flowering time on the top of LG1 and LG3. Alkaloid content was mapped as a Mendelian trait to LG11.  相似文献   

17.
Bacterial wilt (Burkholderia caryophylli (Burkholder) Yabuuchi et al.) is one of the most damaging diseases during carnation (Dianthus caryophyllus L.) cultivation in Japan. To find molecular markers for use in marker-assisted selection, we constructed a simple sequence repeat (SSR)-based genetic linkage map of carnation using an F2 population of 90 plants derived from a cross between a highly resistant line (85-11) and a susceptible cultivar (Pretty Favvare). To develop a large number of SSR markers, we constructed four new SSR-enriched genomic libraries and conducted expressed sequence tag analysis. We mapped 178 SSR loci into 16 linkage groups. The map covered 843.6?cM, with an average distance of 6.5?cM between two loci. This is the first report of a genetic linkage map based mainly on SSR markers in the genus Dianthus. Quantitative trait locus (QTL) analysis identified one locus for resistance to bacterial wilt in linkage group (LG) B4. The locus explained 63.0% of the phenotypic variance for resistance to bacterial wilt. The SSR markers CES1161 and CES2643 that were closest to the QTL were efficient markers for selecting lines with resistance derived from line 85-11. A positional comparison using SSR markers as anchor loci revealed that LG B4 corresponded to LG A6 in a previously constructed map. We found that the position of the resistance locus derived from line 85-11 was similar to that of the major resistance locus observed for a highly resistant wild species, Dianthus capitatus ssp. andrzejowskianus.  相似文献   

18.
The first intraspecific linkage map of the lentil genome was constructed with 114 molecular markers (100 RAPD, 11 ISSR and three RGA) using an F2 population developed from a cross between lentil cultivars ILL5588 and ILL7537 which differed in resistance for ascochyta blight. Linkage analysis at a LOD score of 4.0 and a maximum recombination fraction of 0.25 revealed nine linkage groups comprising between 6 and 18 markers each. The intraspecific map spanned a total length of 784.1 cM. The markers were distributed throughout the genome, however markers were clustered in the middle or near the middle of the linkage groups, suggesting the location of centromeres. Of 114 mapped markers, 16 (14.0%) were distorted, usually at the end or middle of the linkage groups. The utility of ISSR and RGA markers for mapping in lentil was explored, and the primer with an (AC) repeat motif was found to be useful.Communicated by H.C. Becker  相似文献   

19.
Publicly available genomic tools help researchers integrate information and make new discoveries. In this paper, we describe the development of immortal mapping populations of rapid cycling, self-compatible lines, molecular markers, and linkage maps for Brassica rapa and B. oleracea and make the data and germplasm available to the Brassica research community. The B. rapa population consists of 160 recombinant inbred (RI) lines derived from the cross of highly inbred lines of rapid cycling and yellow sarson B. rapa. The B. oleracea population consists of 155 double haploid (DH) lines derived from an F1 cross between two DH lines, rapid cycling and broccoli. A total of 120 RFLP probes, 146 SSR markers, and one phenotypic trait (flower color) were used to construct genetic linkage maps for both species. The B. rapa map consists of 224 molecular markers distributed along 10 linkage groups (A1–A10) with a total distance of 1125.3 cM and a marker density of 5.7 cM/marker. The B. oleracea genetic map consists of 279 molecular markers and one phenotypic marker distributed along nine linkage groups (C1–C9) with a total distance of 891.4 cM and a marker density of 3.2 cM/marker. A syntenic analysis with Arabidopsis thaliana identified collinear genomic blocks that are in agreement with previous studies, reinforcing the idea of conserved chromosomal regions across the Brassicaceae.  相似文献   

20.
Cassava (Manihot esculenta) is an economically important crop that is grown in tropical and sub-tropical regions. Use of molecular technology for genetic improvement of cassava has been limited by the lack of a large set of DNA markers and a genetic map. Therefore, the aims here were to develop additional simple sequence repeat (SSR) markers from the public expressed sequence tags (ESTs), and to construct a genetic linkage map. In this study, we designed 425 EST-SSR markers from sequences obtained from the cassava EST database in GenBank, and integrated them with 667 SSR markers from a microsatellite-enriched genomic sequence received from the International Center for Tropical Agriculture (CIAT). Of these, 107 EST-SSR and 500 genomic SSR primer pairs showed polymorphic patterns when screened in two cassava varieties, Hauy Bong 60 and Hanatee, which were used as female and male parental lines, respectively. Within the 107 and 500 primer pairs, 81 and 226 EST-SSR and SSR primer pairs were successfully genotyped with 100 samples of F1 progeny, respectively. The results showed 20 linkage groups consisting of 211 markers—56 EST-SSR and 155 SSR markers—spanning 1,178 cM, with an average distance between markers of 5.6 cM and about 11 markers per linkage group. These novel EST-SSR markers provided genic PCR-based co-dominant markers that were useful, reliable and economical. The EST-SSRs were used together with SSR markers to construct the cassava genetic linkage map which will be useful for the identification of quantitative trait loci controlling the traits of interest in cassava breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号