首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent data have implicated nuclear factor kappaB (NF-kappaB) in the prevention of apoptosis in transformed cell lines exposed to tumor necrosis factor alpha (TNF-alpha). However, it is obscure whether NF-kappaB plays an anti-apoptotic role in nontransformed cells, and it is not clear whether NF-kappaB inhibits apoptosis triggered by other mediators. We investigated the effect of specific inhibition of NF-kappaB on cytokine-induced apoptosis of glomerular mesangial cells, which is important in determining the outcome of glomerulonephritis. Cultured rat mesangial cells were stably transfected with the dominant negative mutant inhibitor of NF-kappaB (IkappaBalphaM). IkappaBalphaM was resistant to stimulus-dependent degradation and suppressed NF-kappaB activation induced by TNF-alpha (10 ng/ml) or IL-1beta (10 ng/ml). IkappaBalphaM significantly sensitized mesangial cells to TNF-alpha-induced apoptosis in a dose- and time-dependent manner but had no significant effects on the level of apoptosis in the presence of proinflammatory or apoptosis-inducing stimuli including Fas ligand, IL-1alpha, IL-1beta, hydrogen peroxide, lipopolysaccharide, cycloheximide, or serum deprivation. Moreover, IkappaBalphaM-mediated sensitization to TNF-alpha overcame the protective effect of mesangial cell survival factors present in serum, which usually inhibit killing of mesangial cells by the proapoptotic stimuli used. These data show that inhibition of NF-kappaB selectively sensitizes primary adult glomerular mesangial cells to TNF-induced apoptosis but not to other mediators of cell death including the Fas ligand.  相似文献   

2.
During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions.  相似文献   

3.
The long pentraxin PTX3 has been recently involved in amplification of the inflammatory reactions and regulation of innate immunity. In the present study we evaluated the expression and role of PTX3 in glomerular inflammation. PTX3 expression was investigated in the IgA, type I membranoproliferative, and diffuse proliferative lupus glomerulonephritis, which are characterized by inflammatory and proliferative lesions mainly driven by resident mesangial cells, and in the membranous glomerulonephritis and the focal segmental glomerular sclerosis, where signs of glomerular inflammation are usually absent. We found an intense staining for PTX3 in the expanded mesangial areas of renal biopsies obtained from patients with IgA glomerulonephritis. The pattern of staining was on glomerular mesangial and endothelial cells. Scattered PTX3-positive cells were also detected in glomeruli of type I membranoproliferative glomerulonephritis. The concomitant expression of CD14 suggests an inflammatory origin of these cells. Normal renal tissue and biopsies from patients with the other glomerular nephropathies studied were mainly negative for PTX3 expression in glomeruli. However, PTX3-positive cells were detected in the interstitium of nephropathies showing inflammatory interstitial injury. In vitro, cultured human mesangial cells synthesized PTX3 when stimulated with TNF-alpha and IgA and exhibited specific binding for recombinant PTX3. Moreover, stimulation with exogenous PTX3 promoted mesangial cell contraction and synthesis of the proinflammatory lipid mediator platelet-activating factor. In conclusion, we provide the first evidence that mesangial cells may both produce and be a target for PTX3. The detection of this long pentraxin in the renal tissue of patients with glomerulonephritis suggests its potential role in the modulation of glomerular and tubular injury.  相似文献   

4.
Lupus glomerulonephritis is initiated by deposition of IgG-containing immune complexes in renal glomeruli. FcR engagement by immune complexes (IC) is crucial to disease development as uncoupling this pathway in FcRgamma(-/-) abrogates inflammatory responses in (NZB x NZW)F1 mice. To define the roles of FcR-bearing hemopoietic cells and of kidney resident mesangial cells in pathogenesis, (NZB x NZW)F1 bone marrow chimeras were generated. Nephritis developed in (NZB x NZW)F1 mice expressing activating FcRs in hemopoietic cells. Conversely, recipients of FcRgamma(-/-) bone marrow were protected from disease development despite persistent expression of FcRgamma in mesangial cell populations. Thus, activating FcRs on circulating hemopoietic cells, rather than on mesangial cells, are required for IC-mediated pathogenesis in (NZB x NZW)F1. Transgenic FcRgamma(-/-) mice expressing FcRgamma limited to the CD11b+ monocyte/macrophage compartment developed glomerulonephritis in the anti-glomerular basement disease model, whereas nontransgenic FcRgamma(-/-) mice were completely protected. Thus, direct activation of circulating FcR-bearing myeloid cells, including monocytes/macrophages, by glomerular IC deposits is sufficient to initiate inflammatory responses.  相似文献   

5.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

6.
7.
8.
Stimulation of rat mesangial cell proliferation by macrophage interleukin 1   总被引:31,自引:0,他引:31  
Conditioned media from LPS-activated rat peritoneal macrophages enhanced the proliferation rates of cultured rat glomerular mesangial cells. This macrophage-derived activity extensively co-purified with interleukin 1 (IL 1) activity through sequential ammonium sulfate precipitation, S-200 gel chromatography, DEAE-cellulose anion exchange chromatography, and phenyl-Sepharose chromatography. In addition, the macrophage-derived factor was heat-labile (80 degrees C) and inactivated by phenylglyoxal, thus allowing tentative identification as IL 1. Macrophage supernatants and purified IL 1 enhanced the proliferative rates of mesangial cells only in the presence of serum; the use of platelet-poor plasma or serum depleted of platelet-derived growth factor was without effect. IL 1 acted to increase the percentage of cycling cells, without a change in the length of the individual cell cycle times. These findings provide a potential mechanism whereby activated macrophages, in combination with platelet factors, enhance mesangial cell proliferation. Such processes may contribute to the mesangial hypercellularity frequently found in immune-mediated glomerulonephritis.  相似文献   

9.
Glomerular mesangial cells both synthesize and respond to insulin-like growth factor-1 (IGF-1). Increased activity of the IGF signaling pathway has been implicated as a major contributor to renal enlargement and subsequent development of diabetic nephropathy. Secreted protein acidic and rich in cysteine (SPARC), a matricellular protein, has been shown to modulate the interaction of cells with growth factors and extracellular matrix. We have reported that primary glomerular mesangial cells derived from SPARC-null mice exhibit an accelerated rate of proliferation and produce substantially decreased levels of transforming growth factor beta1 (TGF-beta1) in comparison to their wild-type counterparts (Francki et al. [1999] J. Biol. Chem. 274: 32145-32152). Herein we present evidence that SPARC modulates IGF-dependent signaling in glomerular mesangial cells. SPARC-null mesangial cells produce increased amounts of IGF-1 and -2, as well as IGF-1 receptor (IGF-1R) in comparison to wild-type cells. Addition of recombinant SPARC to SPARC-null cells inhibited IGF-1-stimulated mitogen activated protein kinase (MAPK) activation and DNA synthesis. We also show that the observed accelerated rate of basal and IGF-1-stimulated proliferation in mesangial cells derived from SPARC-null animals is due, at least in part, to markedly diminished levels of cyclin D1 and the cyclin-dependent kinase (cdk) inhibitors p21 and p27. Since expression of SPARC in the glomerulus is especially prominent during renal injury, our findings substantiate previous claims that SPARC is involved in glomerular remodeling and repair, a process commonly associated with mesangioproliferative glomerulonephritis and diabetic nephropathy.  相似文献   

10.
11.
Human immunodeficiency virus type 1 (HIV-1) can establish latent infection following provirus integration into the host genome. NF-kappaB plays a critical role in activation of HIV-1 gene expression by cytokines and other stimuli, but the signal transduction pathways that regulate the switch from latent to productive infection have not been defined. Here, we show that ERK1/ERK2 mitogen-activated protein kinase (MAPK) plays a central role in linking signals at the cell surface to activation of HIV-1 gene expression in latently infected cells. MAPK was activated by cytokines and phorbol 12-myristate 13-acetate in latently infected U1 cells. The induction of HIV-1 expression by these stimuli was inhibited by PD98059 and U0126, which are specific inhibitors of MAPK activation. Studies using constitutively active MEK or Raf kinase mutants demonstrated that MAPK activates the HIV-1 long terminal repeat (LTR) through the NF-kappaB sites. Most HIV-1 inducers activated NF-kappaB via a MAPK-independent pathway, indicating that activation of NF-kappaB is not sufficient to explain the activation of HIV-1 gene expression by MAPK. In contrast, all of the stimuli activated AP-1 via a MAPK-dependent pathway. NF-kappaB and AP-1 components c-Fos and c-Jun were shown to physically associate by yeast two-hybrid assays and electrophoretic mobility shift assays. Coexpression of NF-kappaB and c-Fos or c-Jun synergistically transactivated the HIV-1 LTR through the NF-kappaB sites. These studies suggest that MAPK acts by stimulating AP-1 and a subsequent physical and functional interaction of AP-1 with NF-kappaB, resulting in a complex that synergistically transactivates the HIV-1 LTR. These results define a mechanism for signal-dependent activation of HIV-1 replication in latently infected cells and suggest potential therapeutic strategies for unmasking latent reservoirs of HIV-1.  相似文献   

12.
Lipopolysaccharide (LPS)-activated macrophages are pivotal in innate immunity. With LPS treatment, extracellular signals are transduced into macrophages via Toll-like receptor 4 and induce inflammatory mediator production by activating signaling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway and the mitogen-activated protein kinase (MAPK) pathway. However, the mechanisms by which the intracellular free Ca2+ concentration ([Ca2+]i) increases and protein kinase C (PKC) is activated remain unclear. Therefore, we investigated the signaling pathway for Ca2+- and PKC-dependent NF-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha (TNF-alpha) production in LPS-stimulated rat peritoneal macrophages. The results demonstrated that the LPS-induced transient [Ca2+]i increase is due to Ca2+ release and influx. Extracellular and intracellular Ca2+ chelators inhibited phosphorylation of PKCalpha and PKCbeta. A PKCbeta-specific and a general PKC inhibitor blunted phosphorylation of serine in mitogen-activated/extracellular signal-regulated kinase kinase kinase (MEKK) 1. Moreover, a MEKK inhibitor reduced activation of inhibitorykappaB kinase and NF-kappaB. Upstream of the [Ca2+]i increase, a protein-tyrosine kinase inhibitor reduced phosphorylation of phospholipase C (PLC) gamma. Furthermore, a PLC inhibitor eliminated the transient [Ca2+]i increase and decreased the amount of activated PKC. Therefore, these results revealed the following roles of Ca2+ and PKC in the signaling pathway for NF-kappaB activation in LPS-stimulated macrophages. After LPS treatment, protein-tyrosine kinase mediates PLCgamma1/2 phosphorylation, which is followed by a [Ca2+]i increase. Several PKCs are activated, and PKCbeta regulates phosphorylation of serine in MEKK1. Moreover, MEKKs regulate inhibitory kappaB kinase activation. Sequentially, NF-kappaB is activated, and inducible nitric-oxide synthase and tumor necrosis factor-alpha production is promoted.  相似文献   

13.
Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure.  相似文献   

14.
The biology of mesangial cells in glomerulonephritis   总被引:5,自引:0,他引:5  
It is likely that a complex bidirectional interaction occurs between mesangial cells and the immune cells which infiltrate the mesangium during nephritis. Macrophages and other immune cells liberate a series of mediators, including substances such as IL-1, beta-endorphin, TNF, and PDGF--all of which promote the growth of mesangial cells. The end result is mesangial cell proliferation and increased matrix production, both of which are seen in nephritis. The proliferating mesangial cells liberate autocoids such as IL-1 and PDGF, thereby setting up an amplifying loop. Simultaneously, suppressive factors such as TGF-beta are released which antagonize the actions of these growth-promoting substances. The proliferating mesangial cells also produce immunomodulatory peptides, which will in turn act on the infiltrating macrophages to stimulate their replication and activation. Such activated macrophages continue to amplify the inflammatory lesion and also promote the phagocytosis of localized antigen-antibody complexes. The net effect of all of these interactions will depend on the dominance of substances which persist and override the roles of other molecules. Studies of the controls which regulate the production of these growth factors/immune modulators will yield insights into the fundamental mechanisms which determine the outcome in glomerulonephritis.  相似文献   

15.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix (ECM) synthesis that leads to renal fibrosis. Intracellular signaling mechanisms involved in this process remain incompletely understood. Mitogen-activated protein kinase (MAPK) is a major stress signal-transducing pathway, and we have previously reported activation of p38 MAPK by TGF-beta1 in rat mesangial cells and its role in the stimulation of pro-alpha1(I) collagen. In this study, we further investigated the mechanism of p38 MAPK activation by TGF-beta1 and the role of MKK3, an upstream MAPK kinase of p38 MAPK, by examining the effect of targeted disruption of the Mkk3 gene. We first isolated glomerular mesangial cells from MKK3-null (Mkk3-/-) and wild-type (Mkk3+/+) control mice. Treatment with TGF-beta1 induced rapid phosphorylation of MKK3 as well as p38 MAPK within 15 min in cultured wild-type (Mkk3+/+) mouse mesangial cells. In contrast, TGF-beta1 failed to induce phosphorylation of either MKK3 or p38 MAPK in MKK3-deficient (Mkk3-/-) mouse mesangial cells, indicating that MKK3 is required for TGF-beta1-induced p38 MAPK activation. TGF-beta1 selectively activated the p38 MAPK isoforms p38alpha and p38delta in wild-type (Mkk3+/+) mesangial cells, but not in MKK3-deficient (Mkk3-/-) mesangial cells. Thus, activation of p38alpha and p38delta is dependent on the activation of upstream MKK3 by TGF-beta1. Furthermore, MKK3 deficiency resulted in a selective disruption of TGF-beta1-stimulated up-regulation of pro-alpha1(I) collagen expression but not TGF-beta1 induction of fibronectin and PAI-1. These data demonstrate that the MKK3 is a critical component of the TGF-beta1 signaling pathway, and its activation is required for subsequent p38alpha and p38delta MAPK activation and collagen stimulation by TGF-beta1.  相似文献   

16.
TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF.  相似文献   

17.
《Cellular signalling》2014,26(4):683-690
Tumour necrosis factor (p55 or p60) receptor (TNFR) 1 is the major receptor that activates pro-inflammatory signalling and induces gene expression in response to TNF. Consensus is lacking for the function of (p75 or p80) TNFR2 but experiments in mice have suggested neuro-, cardio- and osteo-protective and anti-inflammatory roles. It has been shown in various cell types to be specifically required for the induction of TNFR-associated factor-2 (TRAF2) degradation and activation of the alternative nuclear factor (NF)-kappaB pathway, and to contribute to the activation of mitogen-activated protein kinases (MAPK) and the classical NF-kappaB pathway. We have investigated the signalling functions of TNFR2 in primary human and murine macrophages. We find that in these cells TNF induces TRAF2 degradation, and this is blocked in TNFR2−/− macrophages. TRAF2 has been previously reported to be required for TNF-induced activation of p38 MAPK. However, TRAF2 degradation does not inhibit TNF-induced tolerance of p38 MAPK activation. Neither TNF, nor lipopolysaccharide treatment, induced activation of the alternative NF-kappaB pathway in macrophages. Activation by TNF of the p38 MAPK and NF-kappaB pathways was blocked in TNFR1−/− macrophages. In contrast, although TNFR2−/− macrophages displayed robust p38 MAPK activation and IkappaBα degradation at high concentrations of TNF, at lower doses the concentration dependence of signalling was weakened by an order of magnitude. Our results suggest that, in addition to inducing TRAF2 protein degradation, TNFR2 also plays a crucial auxiliary role to TNFR1 in sensitising macrophages for the ligand-induced activation of the p38 MAPK and classical NF-kappaB pro-inflammatory signalling pathways.  相似文献   

18.
19.
MRL/Mp-lpr/lpr (MRL/lpr) mice develop immune complex glomerulonephritis similar to human lupus. Glomerular mesangial cells are key modulators of the inflammatory response in lupus nephritis. When activated, these cells secrete inflammatory mediators including NO and products of cyclooxygenase perpetuating the local inflammatory response. PGJ2, a product of cyclooxygenase, is a potent in vitro inhibitor of macrophage inflammatory functions and is postulated to function as an in vivo inhibitor of macrophage-mediated inflammatory responses. We hypothesized that in lupus, a defect in PGJ2 production allows the inflammatory response to continue unchecked. To test this hypothesis, mesangial cells were isolated from MRL/lpr and BALB/c mice and stimulated with IL-1beta or LPS plus IFN-gamma. In contrast to the 2- to 3-fold increase in PGJ2 production by stimulated BALB/c mesangial cells, supernatant PGJ2 did not increase in MRL/lpr mesangial cell cultures. NO production in stimulated MRL/lpr and BALB/c mesangial cells, was blocked by PGJ2 and pioglitazone. These studies suggest that abnormalities in PGJ2 production are present in MRL/lpr mice and may be linked to the heightened activation state of mesangial cells in these mice.  相似文献   

20.
A thymocyte-activating factor derived from glomerular mesangial cells   总被引:16,自引:0,他引:16  
The glomerular mesangium is centrally involved in immune-mediated glomerulonephritis. The mesangial cell is a mesenchyme-derived multipotential vascular pericyte, which shares several properties with macrophages. Cultured, proliferating rat mesangial cells produce a factor, mesangial cell-derived thymocyte-activating factor (MC-TAF), which physicochemically and biologically closely resembles macrophage interleukin 1. MC-TAF is heat labile, of low m.w. (approximately 15,000), and adheres to anion exchangers. MC-TAF acts to augment lectin-induced thymocyte proliferation and enhances peripheral lymphocyte production of interleukin 2. These findings suggest that a mesangial cell cytokine may interact with the cellular immune system in an antigenically nonspecific fashion to modulate immune responses in glomerular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号