首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregation of the protein of the dahlemense strain of tobacco mosaic virus has been studied by electron microscopy and ultracentrifugation. The aggregates formed are similar to those formed by the vulgare strain, although the particular conditions for their formation are often rather different. Helix formation by dialysis of A protein at pH 8 to acid pH is much more efficient if an intermediate step at pH 7 is introduced. The 20 S particle or two-layer disk is stable over a wide range of pH and ionic strength values. There is no tendency to form short stacks of disks at high ionic strength; instead, 30 S particles are formed that correspond to a pair of interlocked disks giving a “figure-of-eight” appearance in electron micrographs. These particles appear to be the “building blocks” of the protein crystal.  相似文献   

2.
Polymorphism in the assembly of polyomavirus capsid protein VP1.   总被引:16,自引:2,他引:14       下载免费PDF全文
Polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in Escherichia coli, forms stable pentamers in low-ionic strength, neutral, or alkaline solutions. Electron microscopy showed that the pentamers, which correspond to viral capsomeres, can be self-assembled into a variety of polymorphic aggregates by lowering the pH, adding calcium, or raising the ionic strength. Some of the aggregates resembled the 500-A-diameter virus capsid, whereas other considerably larger or smaller capsids were also produced. The particular structures formed on transition to an environment favoring assembly depended on the pathway of the solvent changes as well as on the final conditions. Mass measurements from cryoelectron micrographs and image analysis of negatively stained specimens established that a distinctive 320-A-diameter particle consists of 24 close-packed pentamers arranged with octahedral symmetry. Comparison of this unexpected octahedral assembly with a 12-capsomere icosahedral aggregate and the 72-capsomere icosahedral virus capsid by computer graphics methods indicates that similar connections are made among trimers of pentamers in these shells of different size. The polymorphism in the assembly of VP1 pentamers can be related to the switching in bonding specificity required to build the virus capsid.  相似文献   

3.
The reconstitution of Brome Mosaic Virus (BMV) has been studied using neutron scattering. Experiments were performed on disassembled virus without subsequent separation of components. Phase diagrams of the disassembly and subsequent reassembly of BMV were established as a function of pH and LiCl molarity by analytical centrifugation and quasi-elastic light scattering. Disassembly occurs at a pH above 6.5 and above 0.8 M LiCl. On reassembly, if the pH is lowered first, capsids are formed without subsequent incorporation of RNA. Neutron scattering was used to investigate the formation of virus particles, when the ionic strength was lowered from 1.4 to 0.1 M LiCl at pH 7.8. The reconstitution was followed continuously. As it was driven by a lowering of the ionic strength the kinetics of the process cannot be studied for short times. However the fact that at any given ionic strength no evolution of the scattering was observed with time implies that the reconstitution is complete within a few minutes. The observations in buffers with various amounts of D2O lead to the conclusion that the reassembly is achieved by co-condensation of the RNA and of the capsid proteins.  相似文献   

4.
The protein of brome mosaic virus can self assemble in-vitro to form empty capsids. In the absence of RNA at pH=7 and 0.5 M KCl there is a dynamic equilibrium between monomers and oligomers. At pH=5 the protein assembles into empty capsids. The kinetics of this assembly, triggered by pH jump from neutral to acidic pH, was investigated by X-ray and light scattering.Cryoelectron microscopy observations suggested that reconstitution is achieved by progressive incorporation of small building units in a spherical shell. This hypothesis has been tested by the analysis of the scattering data in terms of four classes of incomplete capsids represented as spherical shells with holes of different sizes. The time dependence of the population of each class was determined by a least squares analysis of the experimental data. Although the basic polymerizing unit has not been uniquely characterized, the results are compatible with a dimer for this species. The characteristic times for capsid assembly are found to vary as the inverse of the square of the concentration.  相似文献   

5.
The aggregates formed at equilibrium by purified protein from cowpea chlorotic mottle virus have been characterized on the basis of their sedimentation behaviour and appearance in the electron microscope. Between pH 3.5 and 7.5, at ionic strengths greater than 0.2, most of the protein is found in aggregates sedimenting at either 3 S or 50 S. The 50 S aggregate is identified as the reassembled capsid of cowpea ehlorotic mottle virus. Decreasing the ionic strength favours the formation of multi-shelled particles. Below pH 5.5 single- and multishelled particles predominate, while above this pH most of the protein sediments at 3 S.Varying the temperature from 5 °C to 20 °C has little effect on the equilibrium proportions of aggregates although some real differences can be detected. Ionic strength is not as important a variable as pH in determining which protein forms are present (but increasing ionic strength does result in a steady decrease in the proportion of protein in the multi-layer aggregates). The dependence of the equilibrium upon protein concentration shows that capsid formation is a quasi-crystallization: beyond a certain total protein concentration the concentration of 3 S aggregate remains at this “critical” concentration and all further protein goes into 50 S capsid. In addition to shells and variations upon shells, tubes and hexagonal nets of protein subunits have occasionally been seen with the electron microscope.  相似文献   

6.
Hepatitis B virus (HBV) capsids play an important role in viral nucleic acid metabolism and other elements of the virus life cycle. Misdirection of capsid assembly (leading to formation of aberrant particles) may be a powerful approach to interfere with virus production. HBV capsids can be assembled in vitro from the dimeric capsid protein. We show that a small molecule, bis-ANS, binds to capsid protein, inhibiting assembly of normal capsids and promoting assembly of noncapsid polymers. Using equilibrium dialysis to investigate binding of bis-ANS to free capsid protein, we found that only one bis-ANS molecule binds per capsid protein dimer, with an association energy of -28.0 +/- 2.0 kJ/mol (-6.7 +/- 0.5 kcal/mol). Bis-ANS inhibited in vitro capsid assembly induced by ionic strength as observed by light scattering and size exclusion chromatography. The binding energy of bis-ANS for capsid protein calculated from assembly inhibition data was -24.5 +/- 0.9 kJ/mol (-5.9 +/- 0.2 kcal/mol), essentially the same binding energy observed in studies of unassembled protein. These data indicate that capsid protein bound to bis-ANS did not participate in assembly; this mechanism of assembly inhibition is analogous to competitive or noncompetitive inhibition of enzymes. While assembly of normal capsids is inhibited, our data suggest that bis-ANS leads to formation of noncapsid polymers. Evidence of aberrant polymers was identified by light scattering and electron microscopy. We propose that bis-ANS acts as a molecular "wedge" that interferes with normal capsid protein geometry and capsid formation; such wedges may represent a new class of antiviral agent.  相似文献   

7.
G Moyne  F Harper  S Saragosti  M Yaniv 《Cell》1982,30(1):123-130
Reduction of disulfide bonds involving the major capsid protein with dithiothreitol and removal of the calcium ions by EGTA disrupts the simian virus 40 virions. This process yields normal circular viral minichromosomes containing the four core histones and traces of the capsid proteins at pH values higher than 8.5. However, when carried out at pH 7.5, this procedure yields nucleoprotein complexes that contain both histones and the viral structural proteins. These pH 7.5 complexes appear as circular structures with a mean of 93 +/- 17 beads with a diameter of 7 nm and no visible nucleosomes when observed by electron microscopy. In contrast to the compaction of the viral DNA in minichromosomes, the length of these beaded structures is roughly the same as free DNA. We suggest that VP1, the major capsid protein, can act as a nucleosome unfolding agent in neutral pH and low ionic strength.  相似文献   

8.
The association behavior of beta-lactoglobulin has been studied by small-angle neutron scattering as a function of protein concentration, temperature, pH, and NaCl concentration of the solution. By indirect Fourier transformation of the spectra, pair-distance distribution functions for the various samples were obtained. These functions provided information on the maximum size, the weight-averaged molecular mass, and the z-averaged radius of gyration of the beta-lactoglobulin particles. At room temperature and pH values below 4 and above 5.2 the protein consists predominantly of monomers and dimers, consistent with literature. In these pH regimes the formation of dimers is favored upon increasing ionic strength and decreasing protein charge (pH values closer to the isoelectric point of the protein). Around pH 4.7, larger oligomeric structures are formed, enhanced by a decrease in temperature and a decrease in ionic strength. beta-Lactoglobulin A associates more strongly than beta-lactoglobulin B. Surprisingly, at pH 6.9 larger structures than dimers seem to be formed at high protein concentrations (> 30 mg mL-1).  相似文献   

9.
The influence of the ionic strength on the structure of beta-lactoglobulin aggregates formed after heating at pH 7 has been studied using static and dynamic light scattering. The native protein depletion has been monitored using size exclusion chromatography. Above a critical association concentration (CAC) well-defined clusters are formed containing about 100 monomers. The CAC increases with decreasing ionic strength. The so-called primary aggregates associate to form self similar semi-flexible aggregates with a large scale structure that is only weakly dependent on the ionic strength. The local density of the aggregates increases with increasing ionic strength. At a critical gel concentration, Cg, the size of the aggregates diverges. Cg decreases from 100 g/l without added salt to 1 g/l at 0.4M NaCl. For C > Cg the system gels except at high ionic strength close to Cg where the gels collapse under gravity and a precipitate is formed.  相似文献   

10.
We demonstrate that bovine core histones are natively unfolded proteins in solutions with low ionic strength due to their high net positive charge at pH 7.5. Using a variety of biophysical techniques we characterized their conformation as a function of pH and ionic strength, as well as correlating the conformation with aggregation and amyloid fibril formation. Tertiary structure was absent under all conditions except at pH 7.5 and high ionic strength. The addition of trifluoroethanol or high ionic strength induced significant alpha-helical secondary structure at pH 7.5. At low pH and high salt concentration, small-angle X-ray scattering and SEC HPLC indicate the histones are present as a hexadecamer of globular subunits. The secondary structure at low pH was independent of the ionic strength or presence of TFE, as judged by FTIR. The data indicate that histones are able to adopt five different relatively stable conformations; this conformational variability probably reflects, in part, their intrinsically disordered structure. Under most of the conditions studied the histones formed amyloid fibrils with typical morphology as seen by electron microscopy. In contrast to most aggregation/amyloidogenic systems, the kinetics of fibrillation showed an inverse dependence on histone concentration; we attribute this to partitioning to a faster pathway leading to non-fibrillar self-associated aggregates at higher protein concentrations. The rate of fibril formation was maximal at low pH, and decreased to zero by pH 10. The kinetics of fibrillation were very dependent on the ionic strength, increasing with increasing salt concentration, and showing marked dependence on the nature of the ions; interestingly Gdn.HCl increased the rate of fibrillation, although much less than NaCl. Different ions also differentially affected the rate of nucleation and the rate of fibril elongation.  相似文献   

11.
Different variants of hepatitis C virus core protein (HCcAg) have proved to self-assemble in vitro into virus-like particles (VLPs). However, difficulties in obtaining purified mature HCcAg have limited these studies. In this study, a high degree of monomeric HCcAg purification was accomplished using chromatographic procedures under denaturing conditions. Size exclusion chromatography and sucrose density gradient centrifugation of renatured HCcAg (in the absence of structured RNA) under reducing conditions suggested that it assembled into empty capsids. The electron microscopy analysis of renatured HCcAg showed the presence of spherical VLPs with irregular shapes and an average diameter of 35nm. Data indicated that HCcAg monomers assembled in vitro into VLPs in the absence of structured RNA, suggesting that recombinant HCcAg used in this work contains all the information necessary for the assembly process. However, they also suggest that some cellular factors might be required for the proper in vitro assembly of capsids.  相似文献   

12.
《The Journal of cell biology》1989,109(4):1537-1547
We used 90 degrees light scattering, analytical ultracentrifugation, and electron microscopy to deduce that Acanthamoeba myosin-II minifilaments, composed of eight molecules each, assemble by a novel mechanism consisting of three successive dimerization steps rather than by the addition of monomers or parallel dimers to a nucleus. Above 200 mM KCl, Acanthamoeba myosin-II is monomeric. At low ionic strength (less than 100 mM KCl), myosin-II polymerizes into bipolar minifilaments. Between 100 and 200 mM KCl, plots of light scattering vs. myosin concentration all extrapolate to the origin but have slopes which decrease with increasing KCl. This indicates that structures intermediate in size between monomers and full length minifilaments are formed, and that the critical concentrations for assembly of these structures is very low. Analytical ultracentrifugation has confirmed that intermediate structures exist at these salt concentrations, and that they are in rapid equilibrium with each other. We believe these structures represent assembly intermediates and have used equilibrium analytical ultracentrifugation and electron microscopy to identify them. Polymerization begins with the formation of antiparallel dimers, with the two tails overlapping by approximately 15 nm. Two antiparallel dimers then associated with a 15-nm stagger to form an antiparallel tetramer. Finally, two tetramers associate with a 30-nm stagger to form the completed minifilament. At very low ionic strengths, the last step in the assembly mechanism is largely reversed and antiparallel tetramers are the predominant species. Alkaline pH, which can also induce minifilament disassembly, produces the same assembly intermediates as are found for salt induced disassembly.  相似文献   

13.
The stability properties of cucumber mosaic virus were investigated in relation to those of two other, well-described, icosahedral RNA viruses of similar geometry; the cowpea chlorotic mottle virus and the turnip yellow mosaic virus. High concentrations of neutral salts caused the dissociation of cucumber mosaic virus into its constituent RNA and protein subunits irrespective of the pH of the solution. At low ionic strength the effect of pH on the infectivity and the sedimentation behavior of the virus was tested between pH 4.0 and 8.5. No effect was noticed in this range, but significant change became evident at pH 9.8 and was complete at pH 10.45. The products of this alkaline treatment were a mixture of slower sedimenting nucleoproteins. The RNA inside cucumber mosaic virus was accessible to pancreatic ribonuclease. There was little or no pH-dependence of the ribonuclease susceptibility. Under no circumstances were protein capsids of cucumber mosaic virus ever obtained, neither by degradation of the virion, reassembly of the protein subunits, nor directly from the infected plant. These stability properties of cucumber mosaic virus are strikingly different from those of cowpea chlorotic mottle virus and turnip yellow mosaic virus, as reported in the literature, and indicate the possession of only weak inter-protein subunit linkages, or their total absence.  相似文献   

14.
Amyloid fibrils formed by incubation of recombinant wild-type human beta(2)-microglobulin (beta(2)M) ab initio in vitro at low pH and high ionic strength are short and highly curved. By contrast, fibrils extracted from patients suffering from haemodialysis-related amyloidosis and those formed by seeding growth of the wild-type protein in vitro with fibrils ex vivo are longer and straighter than those previously produced ab initio in vitro. Here we explore the effect of growth conditions on morphology of beta(2)M fibrils formed ab initio in vitro from the wild-type protein, as well as a variant form of beta(2)M in which Asn17 is deamidated to Asp (N17D). We show that deamidation results in significant destabilisation of beta(2)M at neutral pH. Despite this, acidification is still necessary to form amyloid from the mutant protein in vitro. Interestingly, at low pH and low ionic strength long, straight fibrils of recombinant beta(2)M are formed in vitro. The fibrils comprise three distinct morphological types when examined using electron microscopy (EM) and atomic force microscopy (AFM) that vary in periodicity and the number of constituent protofibrils. Using kinetic experiments we suggest that the immature fibrils observed previously do not represent intermediates in the assembly of fully mature amyloid, at least under the conditions studied here.  相似文献   

15.
The mesostructure of bovine serum albumin (BSA) at low pH was investigated. Rheological measurements were performed to determine the critical percolation concentration (cp). A decreasing cp with increasing ionic strength was found. Fibrils with a contour length of about 100–300 nm were found using transmission electron microscopy. The measured conversion of monomers into fibrils was independent of ionic strength (0.20–0.30 M). Dilution of BSA samples showed that the aggregation process is reversible and that there exists a critical concentration for the self-assembly of BSA. We explain the decreasing cp with increasing ionic strength in terms of an adjusted random contact model.  相似文献   

16.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for KS tumors, multicentric Castleman's disease, and primary effusion lymphomas. Like other herpesvirus capsids, the KSHV capsid is an icosahedral structure composed of six proteins. The capsid shell is made up of the major capsid protein, two triplex proteins, and the small capsid protein. The scaffold protein and the protease occupy the internal space. The assembly of KSHV capsids is thought to occur in a manner similar to that determined for herpes simplex virus type 1 (HSV-1). Our goal was to assemble KSHV capsids in insect cells using the baculovirus expression vector system. Six KSHV capsid open reading frames were cloned and the proteins expressed in Sf9 cells: pORF25 (major capsid protein), pORF62 (triplex 1), pORF26 (triplex 2), pORF17 (protease), pORF17.5 (scaffold protein), and also pORF65 (small capsid protein). When insect cells were coinfected with these baculoviruses, angular capsids that contained internal core structures were readily observed by conventional electron microscopy of the infected cells. Capsids were also readily isolated from infected cells by using rate velocity sedimentation. With immuno-electron microscopy methods, these capsids were seen to be reactive to antisera to pORF65 as well as to KSHV-positive human sera, indicating the correct conformation of pORF65 in these capsids. When either virus expressing the triplex proteins was omitted from the coinfection, capsids did not assemble; similar to observations made in HSV-1-infected cells. If the virus expressing the scaffold protein was excluded, large open shells that did not attain icosahedral structure were seen in the nuclei of infected cells. The presence of pORF65 was required for capsid assembly, in that capsids did not form if this protein was absent as judged by both by ultrastructural analysis of infected cells and rate velocity sedimentation experiments. Thus, a novel outcome of this study is the finding that the small capsid protein of KSHV, like the major capsid and triplex proteins, is essential for capsid shell assembly.  相似文献   

17.
The strength of attraction between capsid proteins (CPs) of cowpea chlorotic mottle virus (CCMV) is controlled by the solution pH. Additionally, the strength of attraction between CP and the single-stranded RNA viral genome is controlled by ionic strength. By exploiting these properties, we are able to control and monitor the in vitro co-assembly of CCMV CP and single-stranded RNA as a function of the strength of CP–CP and CP–RNA attractions. Using the techniques of velocity sedimentation and electron microscopy, we find that the successful assembly of nuclease-resistant virus-like particles (VLPs) depends delicately on the strength of CP–CP attraction relative to CP–RNA attraction. If the attractions are too weak, the capsid cannot form; if they are too strong, the assembly suffers from kinetic traps. Separating the process into two steps—by first turning on CP–RNA attraction and then turning on CP–CP attraction—allows for the assembly of well-formed VLPs under a wide range of attraction strengths. These observations establish a protocol for the efficient in vitro assembly of CCMV VLPs and suggest potential strategies that the virus may employ in vivo.  相似文献   

18.
Glial fibrillary acidic protein (GFAP), which was purified from acetone powder of the bovine spinal cord, was reassembled in 0.1 M imidazole HCl buffer containing metallic cations, Ca2+, Mg2+, Na+ or K+ at physiological or more acidic pH. An electron microscopy revealed reassembled glial filaments at pH 6.8 without any cations but amorphous aggregates at pH 6.3 which were readily observed as a white precipitate by the naked eye. Under more alkaline pH (pH 7.4) only rod-shaped short filaments were formed. In the presence of mM concentrations of Ca2+ or Mg2+, thick bundles of glial filaments, detectable by light microscopy, were formed at acidic pH. At pH 7.4 long reassembled filaments could be formed in the buffer containing divalent cations. Na+ (0.1 M) made filament-like structures of GFAP but they are rather random compared to the filaments promoted by the divalent cations. K+ made only amorphous aggregation of the short filaments. These findings indicate that the reassembly of GFAP at physiological pH requires essentially divalent cations but not ionic strength.  相似文献   

19.
Recombinant DNA derived tobacco mosaic virus (vulgare strain) coat protein (r-TMVP) was obtained by cloning and expression in Escherichia coli and was purified by column chromatography, self-assembly polymerization, and precipitation. SDS-PAGE, amino terminal sequencing, and immunoblotting with polyclonal antibodies raised against TMVP confirmed the identify and purity of the recombinant protein. Isoelectric focusing in 8 M urea and fast atom bombardment mass spectrometry demonstrated that the r-TMVP is not acetylated at the amino terminus, unlike the wild-type protein isolated from the tobacco plant derived virus. The characterization of r-TMVP with regard to its self-assembly properties revealed reversible endothermic polymerization as studied by analytical ultracentrifugation, circular dichroism, and electron microscopy. However, the details of the assembly process differed from those of the wild-type protein. At neutral pH, low ionic strength, and 20 degrees C, TMVP forms a 20S two-turn helical rod that acts as a nucleus for further assembly with RNA and additional TMVP to form TMV. Under more acidic conditions, this 20S structure also acts as a nucleus for protein self-assembly to form viruslike RNA-free rods. The r-TMVP that is not acetylated carries an extra positive charge at the amino terminus and does not appear to form the 20S nucleus. Instead, it forms a 28S four-layer structure, which resembles in size and structure the dimer of the bilayer disk formed by the wild-type protein at pH 8.0, high ionic strength, and 20 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
C Chang  S Zhou  D Ganem    D N Standring 《Journal of virology》1994,68(8):5225-5231
Hepadnaviruses encode a single core (C) protein which assembles into a nucleocapsid containing the polymerase (P) protein and pregenomic RNA during viral replication in hepatocytes. We examined the ability of heterologous hepadnavirus C proteins to cross-oligomerize. Using a two-hybrid assay in HepG2 cells, we observed cross-oligomerization among the core proteins from hepatitis B virus (HBV), woodchuck hepatitis virus, and ground squirrel hepatitis virus. When expressed in Xenopus oocytes, in which hepadnavirus C proteins form capsids, the C polypeptides from woodchuck hepatitis virus and ground squirrel hepatitis virus, but not duck hepatitis B virus, can efficiently coassemble with an epitope-tagged HBV core polypeptide to form mixed capsids. However, when two different core mRNAs are coexpressed in oocytes the core monomers show a strong preference for forming homodimers rather than heterodimers. This holds true even for coexpression of two HBV C proteins differing only by an epitope tag, suggesting that core monomers are not free to diffuse and associate with other monomers. Thus, mixed capsids result from aggregation of different species of homodimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号