首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are present at sufficient levels after dilution. If any of these accessory proteins is omitted from the dilution mixture, uncoordinated DNA synthesis occurs, and/or large Okazaki fragments are formed. Thus, the accessory proteins must be recruited from solution for each round of initiation of lagging-strand synthesis. A modified bacteriophage T7 DNA polymerase (Sequenase) can replace the T4 DNA polymerase for leading-strand synthesis but not for well coordinated lagging-strand synthesis. Although T4 DNA polymerase has been reported to self-associate, gel-exclusion chromatography displays it as a monomer in solution in the absence of DNA. It forms no stable holoenzyme complex in solution with the accessory proteins or with the gp41-gp61 helicase-primase. Instead, template DNA is required for the assembly of the T4 replication complex, which then catalyzes coordinated synthesis of leading and lagging strands in a conditionally coupled manner.  相似文献   

2.
Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.  相似文献   

3.
Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.  相似文献   

4.
The mitochondrial DNA polymerase from embryos of Drosophila melanogaster has been examined with regard to template-primer utilization, processivity, and fidelity of nucleotide polymerization. The enzyme replicates predominantly single-stranded and double-stranded DNAs: the rate of DNA synthesis is greatest on the gapped homopolymeric template poly(dA).oligo(dT), while the highest substrate specificity is observed on single-stranded DNA templates of natural DNA sequence. Kinetic experiments and direct physical analysis of DNA synthetic products indicate that the Drosophila DNA polymerase gamma polymerizes nucleotides by a quasi-processive mechanism. The mitochondrial enzyme demonstrates a high degree of accuracy in nucleotide incorporation which is nearly identical with that of the replicative DNA polymerase alpha from Drosophila embryos. Thus, the catalytic properties of the near-homogeneous Drosophila DNA polymerase gamma are consistent with the in vivo requirements for mitochondrial DNA synthesis as described in a variety of animal systems.  相似文献   

5.
Bacteriophage T4 RNase H belongs to a family of prokaryotic and eukaryotic nucleases that remove RNA primers from lagging strand fragments during DNA replication. Each enzyme has a flap endonuclease activity, cutting at or near the junction between single- and double-stranded DNA, and a 5'- to 3'-exonuclease, degrading both RNA.DNA and DNA.DNA duplexes. On model substrates for lagging strand synthesis, T4 RNase H functions as an exonuclease removing short oligonucleotides, rather than as an endonuclease removing longer flaps created by the advancing polymerase. The combined length of the DNA oligonucleotides released from each fragment ranges from 3 to 30 nucleotides, which corresponds to one round of processive degradation by T4 RNase H with 32 single-stranded DNA-binding protein present. Approximately 30 nucleotides are removed from each fragment during coupled leading and lagging strand synthesis with the complete T4 replication system. We conclude that the presence of 32 protein on the single-stranded DNA between lagging strand fragments guarantees that the nuclease will degrade processively, removing adjacent DNA as well as the RNA primers, and that the difference in the relative rates of synthesis and hydrolysis ensures that there is usually only a single round of degradation during each lagging strand cycle.  相似文献   

6.
Replication forks formed during rolling-circle DNA synthesis supported by a tailed form II DNA substrate in the presence of the primosome, the single-stranded DNA binding protein, and the DNA polymerase III holoenzyme (Pol III HE) that had been reconstituted from the purified subunits, beta, tau, and the gamma.delta complex, at limiting (with respect to nucleotide incorporation) concentrations of the Pol III core (alpha, epsilon, and theta) produced aberrantly small Okazaki fragments, while the synthesis of the leading strand was unperturbed. These small Okazaki fragments were not arrayed in tandem along the lagging-strand DNA template, but were separated by large gaps. Similarly structured synthetic products were not manufactured by replication forks reconstituted with higher, saturating concentrations of the Pol III core. Replication forks producing these small fragments could respond, by modulating the size of the Okazaki fragments produced, to variations in the concentration of NTPs or the primase, conditions that affect the frequency of priming on the lagging strand, but not to variation in the concentration of dNTPs, conditions that affect the frequency of utilization of the primers. Significantly longer Okazaki fragments (greater than 7 kilobases) could be produced in the presence of a limiting amount of Pol III core at low concentrations of the primase. These observations indicated that the production of small Okazaki fragments was not a result of a debilitated lagging-strand Pol III core, but rather a function of the time available for nascent strand synthesis during the cycle of events that are required for the manufacture of an Okazaki fragment and that it was the association of primase with the replication fork that keyed this cycle.  相似文献   

7.
To investigate the role of the priming apparatus at the replication fork in determining Okazaki fragment size, the products of primer synthesis generated in vitro during rolling-circle DNA replication catalyzed by the DNA polymerase III holoenzyme, the single-stranded DNA binding protein, and the primosome on a tailed form II DNA template were isolated and characterized. The abundance of oligoribonucleotide primers and the incidence of covalent DNA chain extension of the primer population was measured under different reaction conditions known to affect the size of the products of lagging-strand DNA synthesis. These analyses demonstrated that the factors affecting Okazaki fragment length could be distinguished by either their effect on the frequency of primer synthesis or by their influence on the efficiency of initiation of DNA synthesis from primer termini. Primase and the ribonucleoside triphosphates were found to stimulate primer synthesis. The observed trend toward smaller fragment size as the concentration of these effectors was raised was apparently a direct consequence of the increased frequency of primer synthesis. The beta subunit of the DNA polymerase III holoenzyme and the deoxyribonucleoside triphosphates did not alter the priming frequency; instead, the concentration of these factors influenced the ability of the lagging-strand DNA polymerase to efficiently utilize primers to initiate DNA synthesis. Maximum utilization of the available primers correlated with the lowest mean value of Okazaki fragment length. These data were used to draw general conclusions concerning the temporal order of enzymatic steps that operate during a cycle of Okazaki fragment synthesis on the lagging-strand DNA template.  相似文献   

8.
Agents discriminating between DNA polymerase alpha and DNA polymerases of class delta (polymerase delta or epsilon) were used to characterize steps in the synthesis of the lagging DNA strand of simian virus 40 during DNA replication in isolated nuclei. The synthesis of lagging-strand intermediates below 40 nucleotides, termed DNA primers (T. Nethanel, S. Reisfeld, G. Dinter-Gottlieb, and G. Kaufmann, J. Virol. 62:2867-2873, 1988), was selectively inhibited by butylphenyl dGTP or by neutralizing DNA polymerase alpha monoclonal antibodies. The synthesis of longer lagging chains of up to 250 nucleotides (Okazaki pieces) was affected to a lesser extent, possibly indirectly, by these agents. Aphidicolin, which inhibits both alpha- and delta-class enzymes, elicited the opposite pattern: DNA primers accumulated in its presence and were not converted into Okazaki pieces. These and previous data suggest that DNA polymerase alpha primase synthesizes DNA primers, whereas another DNA polymerase, presumably DNA polymerase delta or epsilon, mediates the conversion of DNA primers into Okazaki pieces.  相似文献   

9.
In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field.  相似文献   

10.
What happens to DNA replication when it encounters a damaged or nicked DNA template has been under investigation for five decades. Initially it was thought that DNA polymerase, and thus the replication-fork progression, would stall at road blocks. After the discovery of replication-fork helicase and replication re-initiation factors by the 1990s, it became clear that the replisome can “skip” impasses and finish replication with single-stranded gaps and double-strand breaks in the product DNA. But the mechanism for continuous fork progression after encountering roadblocks is entangled with translesion synthesis, replication fork reversal and recombination repair. The recently determined structure of the bacteriophage T7 replisome offers the first glimpse of how helicase, primase, leading-and lagging-strand DNA polymerases are organized around a DNA replication fork. The tightly coupled leading-strand polymerase and lagging-strand helicase provides a scaffold to consolidate data accumulated over the past five decades and offers a fresh perspective on how the replisome may skip lesions and complete discontinuous DNA synthesis. Comparison of the independently evolved bacterial and eukaryotic replisomes suggests that repair of discontinuous DNA synthesis occurs post replication in both.  相似文献   

11.
刘晓晶  楼慧强 《遗传》2017,39(9):771-774
DNA复制是生命体内必不可少的基本过程之一。传统研究显示DNA复制体中前导链和后随链的合成速度总体来说是一致的,从而避免在新生链中产生明显的单链缺口。主流的观点认为这是由于负责前导链和后随链的两个DNA聚合酶分子之间存在着某种协调同步机制。然而,Kowalczykowski实验室最近采用单分子荧光显微技术实时跟踪发现,大肠杆菌DNA复制体前导链和后随链上两个DNA聚合酶分子互相独立工作,并且都不是匀速行进而是呈现断断续续、时快时慢的随机动态变化。当DNA聚合酶暂停复制时,解旋酶仍会持续解链,导致解旋酶和聚合酶短暂的分离。有意思的是,此时DNA复制体触发一种类似“死人键”(dead-man’s switch)的保险机制,使DNA解旋的速度降低80%,从而恢复解旋酶和聚合酶的偶联。基于单分子水平的实时观察,他们认为前导链和后随链DNA复制进程均遵循一个符合高斯分布的随机模型。这与传统的生化研究观察到两者的合成速度总体来说是一致的并不矛盾。Kowalczykowski实验室的研究实现了从复制开始到结束整个过程对每个单分子行为的连续观测,而传统研究反映的则是经过较长时间对多分子群体平均水平的最终结果进行测定。因此,单分子技术可以极大地弥补传统生化研究的不足。随着未来单分子技术的进步和更广泛的应用,必将把包括DNA复制在内的生物学研究带到一个新的时代。  相似文献   

12.
N G Nossal 《FASEB journal》1992,6(3):871-878
The DNA replication system of bacteriophage T4 serves as a relatively simple model for the types of reactions and protein-protein interactions needed to carry out and coordinate the synthesis of the leading and lagging strands of a DNA replication fork. At least 10 phage-encoded proteins are required for this synthesis: T4 DNA polymerase, the genes 44/62 and 45 polymerase accessory proteins, gene 32 single-stranded DNA binding protein, the genes 61, 41, and 59 primase-helicase, RNase H, and DNA ligase. Assembly of the polymerase and the accessory proteins on the primed template is a stepwise process that requires ATP hydrolysis and is strongly stimulated by 32 protein. The 41 protein helicase is essential to unwind the duplex ahead of polymerase on the leading strand, and to interact with the 61 protein to synthesize the RNA primers that initiate each discontinuous fragment on the lagging strand. An interaction between the 44/62 and 45 polymerase accessory proteins and the primase-helicase is required for primer synthesis on 32 protein-covered DNA. Thus it is possible that the signal for the initiation of a new fragment by the primase-helicase is the release of the polymerase accessory proteins from the completed adjacent fragment.  相似文献   

13.
The 3' to 5' exonuclease of calf thymus DNA polymerase delta has properties expected of a proofreading nuclease. It digests either single-stranded DNA or the single-stranded nucleotides of a mismatched primer on a DNA template by a nonprocessive mechanism. The distribution of oligonucleotide products suggests that a significant portion of the enzyme dissociates after the removal of one nucleotide. This mechanism is expected if the substrate in vivo is an incorrect nucleotide added by the polymerase. Digestion of single-stranded DNA does not proceed to completion, producing final products six to seven nucleotides long. Digestion of a long mismatched terminus accelerates when the mismatched region is reduced to less than six nucleotides. At the point of complementation, the digestion rate is greatly reduced. These results suggest that short mismatched regions are a preferred substrate. The use of a mismatched primer-template analogue, lacking the template single strand, greatly lowers digestion efficiency at the single-stranded 3'-terminus, suggesting that the template strand is important for substrate recognition. When oligonucleotides were examined for effectiveness as exonuclease inhibitors, (dG)8 was found to be the most potent inhibitor of single-stranded DNA digestion. (dG)8 was less effective at inhibiting digestion of mismatched primer termini, again suggesting that this DNA is a preferred substrate. Overall, these results indicate that the exonuclease of DNA polymerase delta efficiently removes short mismatched DNA, a structure formed from misincorporation during DNA synthesis.  相似文献   

14.
The DNA polymerase I from Thermus aquaticus (Taq polymerase) performs lagging-strand DNA synthesis and DNA repair. Taq polymerase contains a polymerase domain for synthesizing a new DNA strand and a 5'-nuclease domain for cleaving RNA primers or damaged DNA strands. The extended crystal structure of Taq polymerase poses a puzzle on how this enzyme coordinates its polymerase and the nuclease activities to generate only a nick. Using contrast variation solution small angle neutron scattering, we have examined the conformational changes that occur in Taq polymerase upon binding "overlap flap" DNA, a structure-specific DNA substrate that mimics the substrate in strand replacement reactions. In solution, apoTaq polymerase has an overall expanded equilibrium conformation similar to that in the crystal structure. Upon binding to the DNA substrate, both the polymerase and the nuclease domains adopt more compact overall conformations, but these changes are not enough to bring the two active sites close enough to generate a nick. Reconstruction of the three-dimensional molecular envelope from small angle neutron scattering data shows that in the DNA-bound form, the nuclease domain is lifted up relative to its position in the non-DNA-bound form so as to be in closer contact with the thumb and palm subdomains of the polymerase domain. The results suggest that a form of structure sensing is responsible for the coordination of the polymerase and nuclease activities in nick generation. However, interactions between the polymerase and the nuclease domains can assist in the transfer of the DNA substrate from one active site to the other.  相似文献   

15.
Individually purified subunits have been used to reconstitute the action of the Escherichia coli DNA polymerase III holoenzyme (Pol III HE) at a replication fork formed in the presence of the primosome, the single-stranded DNA binding protein, and a tailed form II DNA template. Complete activity, indistinguishable from that of the intact DNA Pol III HE, could be reproduced with a combination of the DNA polymerase III core (Pol III core), the gamma.delta complex, and the beta subunit. Experiments where the Pol III core in reaction mixtures containing active replication forks was diluted suggested that the lagging-strand Pol III core remained associated continuously with the replication fork through multiple cycles of Okazaki fragment synthesis. Since the lagging-strand Pol III core must dissociate from the 3' end of the completed Okazaki fragment, this suggests that its association with the fork is via protein-protein interactions, lending credence to the idea that it forms a dimeric complex with the leading-strand Pol III core. An asymmetry in the action of the subunits was revealed under conditions (high ionic strength) that were presumably destabilizing to the integrity of the replication fork. Under these conditions, tau acted to stimulate DNA synthesis only when the primase was present (i.e. when lagging-strand DNA synthesis was ongoing). This stimulation was reflected by an inhibition of the formation of small Okazaki fragments, suggesting that, within the context of the model developed to account for the temporal order of steps during a cycle of Okazaki fragment synthesis, the presence of tau accelerated the transit of the lagging-strand Pol III core from the 3' end of the completed Okazaki fragment to the 3' end of the new primer.  相似文献   

16.
The field of mitochondrial DNA (mtDNA) replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s) used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark) has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading- and lagging-strand synthesis (resembling bacterial genome replication) and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS). The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase γ, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase). Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.  相似文献   

17.
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3′ single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3′ overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.  相似文献   

18.
M G Kramer  S A Khan    M Espinosa 《The EMBO journal》1997,16(18):5784-5795
Plasmid rolling circle replication involves generation of single-stranded DNA (ssDNA) intermediates. ssDNA released after leading strand synthesis is converted to a double-stranded form using solely host proteins. Most plasmids that replicate by the rolling circle mode contain palindromic sequences that act as the single strand origin, sso. We have investigated the host requirements for the functionality of one such sequence, ssoA, from the streptococcal plasmid pLS1. We used a new cell-free replication system from Streptococcus pneumoniae to investigate whether host DNA polymerase I was required for lagging strand synthesis. Extracts from DNA polymerase I-deficient cells failed to replicate, but this was corrected by adding purified DNA polymerase I. Efficient DNA synthesis from the pLS1-ssoA required the entire DNA polymerase I (polymerase and 5'-3' exonuclease activities). ssDNA containing the pLS1-ssoA was a substrate for specific RNA polymerase binding and a template for RNA polymerase-directed synthesis of a 20 nucleotide RNA primer. We constructed mutations in two highly conserved regions within the ssoA: a six nucleotide conserved sequence and the recombination site B. Our results show that the former seemed to function as a terminator for primer RNA synthesis, while the latter may be a binding site for RNA polymerase.  相似文献   

19.
Ribonucleoside triphosphate (rNTP) incorporation in DNA by DNA polymerases is a frequent phenomenon that results in DNA structural change and genome instability. However, it is unclear whether the rNTP incorporation into DNA follows any specific sequence patterns. We analyzed multiple datasets of ribonucleoside monophosphates (rNMPs) embedded in DNA, generated from three rNMP-sequencing techniques. These rNMP libraries were obtained from Saccharomyces cerevisiae cells expressing wild-type or mutant replicative DNA polymerase and ribonuclease H2 genes. We performed computational analyses of rNMP sites around early and late-firing autonomously replicating sequences (ARSs) of the yeast genome, where leading and lagging DNA synthesis starts bidirectionally. We found the preference of rNTP incorporation on the leading strand in wild-type DNA polymerase yeast cells. The leading/lagging-strand ratio of rNTP incorporation changes dramatically within the first 1,000 nucleotides from ARSs, highlighting the Pol δ - Pol ϵ handoff during early leading-strand synthesis. Furthermore, the pattern of rNTP incorporation is markedly distinct between the leading and lagging strands not only in mutant but also in wild-type polymerase cells. Such specific signatures of Pol δ and Pol ϵ provide a new approach to track the labor of these polymerases.  相似文献   

20.
Replication forks that collapse upon encountering a leading strand lesion are reactivated by a recombinative repair process called replication restart. Using rolling circle DNA substrates to model replication forks, we examine the fate of the helicase and both DNA polymerases when the leading strand polymerase is blocked. We find that the helicase continues over 0.5 kb but less than 3 kb and that the lagging strand DNA polymerase remains active despite its connection to a stalled leading strand enzyme. Furthermore, the blocked leading strand polymerase remains stably bound to the replication fork, implying that it must be dismantled from DNA in order for replication restart to initiate. Genetic studies have identified at least four gene products required for replication restart, RecF, RecO, RecR, and RecA. We find here that these proteins displace a stalled polymerase at a DNA template lesion. Implications of these results for replication fork collapse and recovery are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号