首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiadiazoles are one of the most widely utilized agents in medicinal chemistry, having a wide range of pharmacologic activity. Microtubules (MTs) have always remained a sought-after target in rapidly proliferating cancer cells. We screened for the growth inhibitory effect of synthetic 5-(3-indolyl)-2-substituted-1,3,4-thiadiazoles on cancer cells and identified NMK-TD-100, as the most potent agent. Cell viability experiments using human cervical carcinoma cell line (HeLa cells) indicated that the IC50 value was 1.42±0.11 µM for NMK-TD-100 for 48 h treatment. In further study, we examined the mode of interaction of NMK-TD-100 with tubulin and unraveled the cellular mechanism responsible for its anti-tumor activity. NMK-TD-100 induced arrest in mitotic phase of cell cycle, caused decline in mitochondrial membrane potential and induced apoptosis in HeLa cells. Immunofluorescence studies using an anti-α-tubulin antibody showed a significant depolymerization of the interphase microtubule network and spindle microtubule in HeLa cells in a concentration-dependent manner. However, the cytotoxicity of NMK-TD-100 towards human peripheral blood mononuclear cells (PBMC) was lower compared to that in cancer cells. Polymerization of tissue purified tubulin into microtubules was inhibited by NMK-TD-100 with an IC50 value of 17.5±0.35 µM. The binding of NMK-TD-100 with tubulin was studied using NMK-TD-100 fluorescence enhancement and intrinsic tryptophan fluorescence of tubulin. The stoichiometry of NMK-TD-100 binding to tubulin is 1:1 (molar ratio) with a dissociation constant of ~1 µM. Fluorescence spectroscopic and molecular modeling data showed that NMK-TD-100 binds to tubulin at a site which is very near to the colchicine binding site. The binding of NMK-TD-100 to tubulin was estimated to be ~10 times faster than that of colchicine. The results indicated that NMK-TD-100 exerted anti-proliferative activity by disrupting microtubule functions through tubulin binding and provided insights into its potential of being a chemotherapeutic agent.  相似文献   

2.
A novel mono-THF containing synthetic anticancer drug, COBRA-1, was designed for targeting a previously unrecognized unique narrow binding cavity on the surface of alpha-tubulin. COBRA-1 inhibited GTP-induced tubulin polymerization in cell-free tubulin turbidity assays. Treatment of human breast cancer and brain tumor (glioblastoma) cells with COBRA-1 caused destruction of microtubule organization and apoptosis. Like other microtubule-interfering agents, COBRA-1 activated the proapoptotic c-Jun N-terminal kinase (JNK) signal transduction pathway, as evidenced by rapid induction of c-jun expression.  相似文献   

3.
Microtubules are a well-validated target for anticancer therapy. Molecules that bind tubulin affect dynamic instability of microtubules causing mitotic arrest of proliferating cells, leading to cell death and tumor growth inhibition. Natural antitubulin agents such as taxanes and Vinca alkaloids have been successful in the treatment of cancer; however, several limitations have encouraged the development of synthetic small molecule inhibitors of tubulin function. We have previously reported the discovery of two novel chemical series of tubulin polymerization inhibitors, triazoles (Ouyang et al. Synthesis and structure-activity relationships of 1,2,4-triazoles as a novel class of potent tubulin polymerization inhibitors. Bioorg Med Chem Lett. 2005; 15:5154-5159) and oxadiazole derivatives (Ouyang et al. Oxadiazole derivatives as a novel class of antimitotic agents: synthesis, inhibition of tubulin polymerization, and activity in tumor cell lines. Bioorg Med Chem Lett. 2006; 16:1191-1196). Here, we report on the anticancer effects of a lead oxadiazole derivative in vitro and in vivo. In vitro, IMC-038525 caused mitotic arrest at nanomolar concentrations in epidermoid carcinoma and breast tumor cells, including multidrug-resistant cells. In vivo, IMC-038525 had a desirable pharmacokinetic profile with sustained plasma levels after oral dosing. IMC-038525 reduced subcutaneous xenograft tumor growth with significantly greater efficacy than the taxane paclitaxel. At efficacious doses, IMC-038525 did not cause substantial myelosuppression or peripheral neurotoxicity, as evaluated by neutrophil counts and changes in myelination of the sciatic nerve, respectively. These data indicate that IMC-038525 is a promising candidate for further development as a chemotherapeutic agent.  相似文献   

4.
1-Benzoyl-3-cyanopyrrolo[1,2-a]quinoline (2a) was identified as a novel apoptosis inducer through our caspase- and cell-based high-throughput screening assay. Compound 2a had good activity against several breast cancer cell lines but was much less active against several other cancer cell lines. SAR studies of 2a found that substitution at the 4-position of the 1-benzoyl group was important for activity. Replacing the 3-cyano group by an ester or ketone group led to inactive compounds. Interestingly, 4-substituted analogs such as 1-(4-(1H-imidazol-1-yl)benzoyl)-3-cyanopyrrolo[1,2-a]quinoline (2k) were found to be broadly and highly active in the caspase activation assay as well as in the cell growth inhibition assay with low nM EC(50) and GI(50) values in human breast cancer cells T47D, human colon cancer cells HCT116, and hepatocellular carcinoma cancer cells SNU398. Compound 2a was found not to inhibit tubulin polymerization up to 50 microM, while 2k was found to inhibit tubulin polymerization with an IC(50) value of 5 microM, indicating that certain substituents at the 4-position of the 1-benzoyl group can change the mechanism of action.  相似文献   

5.
An estradiol metabolite, 2-methoxyestradiol (2-MeOE(2)), has shown antiproliferative effects in both hormone-dependent and hormone-independent breast cancer cells. Previously, a series of 2-hydroxyalkyl estradiol analogs had been synthesized in our laboratories as potential probes for comparison of estrogen receptor (ER)-mediated versus non-ER-mediated effects in breast cancer cells. A methoxy derivative of 2-hydroxymethyl estradiol was prepared for biological evaluation and comparison with 2-MeOE(2). Estrogenic activity of the synthetic analogs was evaluated in two ways, one by examining affinity of the analogs for the estrogen receptor in MCF-7 cells and the other by examining the ability of the analogs to induce estrogen-responsive gene expression. The analog, 2-methoxymethyl estradiol (2-MeOMeE(2)), demonstrated weak affinity for the estrogen receptor (0.9% of estradiol) and weak ability to stimulate estrogen-induced expression of the pS2 gene (0.02% of estradiol). Antitumor activity was evaluated both in vitro and in vivo. The steroidal nucleus seems to be an attractive target for developing novel tubulin polymerization inhibitors. Additionally, such steroidal compounds may have low toxicity compared to the natural products known to interact with tubulin. Interestingly, 2-MeOMeE(2) inhibited tubulin polymerization in vitro at concentrations of 1 and 3 microM and was more effective than 2-MeOE(2). In cells, 2-MeOMeE(2) was effective in suppressing growth and inducing cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells. The cytotoxic effects of 2-MeOMeE(2) are associated with alterations in tubulin dynamics, with the frequent appearance of misaligned chromosomes, a significant mitotic delay, and the formation of multinucleated cells. In comparison, 2-MeOE(2) was more effective than 2-MeOMeE(2) in producing cytotoxicity and altering tubulin dynamics in intact cells. Assessment of in vivo antitumor activity was performed in athymic mice containing human breast tumor xenografts. Nude mice bearing MDA-MB-435 tumor xenografts were treated i.p. with 50 mg/kg per day of 2-MeOMeE(2) or vehicle control for 45 days. Treatment with 2-MeOMeE(2) resulted in an approximate 50% reduction in mean tumor volume at treatment day 45 when compared to control animals and had no effect on animal weight. Thus, 2-MeOMeE(2) is an estrogen analog with minimal estrogenic properties that demonstrates antiproliferative effects both in vitro and in the human xenograft animal model of human breast cancer.  相似文献   

6.
We have devised a procedure for the synthesis of analogs of combretastatin A-4 (CA-4) containing sulfur and selenium atoms as spacer groups between the aromatic rings. CA-4 is well known for its potent activity as an inhibitor of tubulin polymerization, and its prodrugs combretastatin A-4 phosphate (CA-4P) and combretastatin A-1 phosphate (CA-1P) are being investigated as antitumor agents that cause tumor vascular collapse in addition to their activity as cytotoxic compounds. Here we report the preparation of two sulfur analogs and one selenium analog of CA-4. All synthesized compounds, as well as several synthetic intermediates, were evaluated for inhibition of tubulin polymerization and for cytotoxic activity in human cancer cells. Compounds 3 and 4 were active at nM concentration against MCF-7 breast cancer cells. As inhibitors of tubulin polymerization, both 3 and 4 were more active than CA-4 itself. In addition, 4 was the most active of these agents against 786, HT-29 and PC-3 cancer cells. Molecular modeling binding studies are also reported for compounds 1, 3, 4 and CA-4 to tubulin within the colchicine site.  相似文献   

7.
Hemiasterlins are sponge-derived tripeptides that inhibit cell growth by depolymerizing existing microtubules and inhibiting microtubule assembly. Since hemiasterlins are poor substrates for P-glycoprotein, they are attractive candidates for cancer therapy and have been undergoing clinical trials. The basis of resistance to a synthetic analogue of hemiasterlin, HTI-286 (HTI), was examined in cell populations derived from ovarian carcinoma (A2780/1A9) cells selected in HTI-286. 1A9-HTI-resistant cells (1A9-HTI(R) series) were 57-89-fold resistant to HTI. Cross-resistance (3-186-fold) was observed to other tubulin depolymerizing drugs, with collateral sensitivity (2-14-fold) to tubulin polymerizing agents. Evaluation of the percentage of polymerized and soluble tubulin in 1A9 parental and 1A9-HTI(R) cells corroborated the HTI cytotoxicity data. At 22 degrees C or 37 degrees C, in the absence of any drug, the percentage of polymerized microtubules for each of the 1A9-HTI(R) populations was greater than that in the 1A9 parental cells, consistent with more stable microtubules. Furthermore, microtubules in the 1A9-HTI(R) populations were also more resistant to depolymerization at 4 degrees C and had more acetylated and detyrosinated (Glu-tubulin) alpha-tubulin, all characteristic of more stable microtubules. The 1A9-HTI(R) cell populations exhibited either a single nucleotide change in the M40 beta-tubulin isotype, S172A, or in two cell populations where no beta-tubulin mutation was detected, mutations in the Kalpha-1 alpha-tubulin isotype, S165P and R221H in one resistant cell population and I384V in another. Unlike reports of mutations resulting in reduced drug affinity, the experimental data and location of mutations are consistent with resistance to HTI-286 mediated by microtubule-stabilizing mutations in beta- or alpha-tubulin.  相似文献   

8.
The protein domain responsible for the interaction of tau with tubulin has been identified. Biophysical studies indicated that the synthetic peptide Val187-Gly204 (VRSKIG-STENLKHQPGGG) from the repetitive sequence on tau binds to two sites on the tubulin heterodimer and to one site on each of the microtubule-associated protein-interacting C-terminal tubulin peptides alpha(430-441) and beta(422-434). The binding data showed a relatively stronger interaction of Val187-Gly204 with beta(422-434) as compared to that with alpha(430-441). The interaction of this tau peptide with either alpha or beta tubulin peptides appears to be associated with conformational changes in both the tau and the tubulin peptides. The beta tubulin peptide also appears to induce a structural change of tau fragment Val218-Gly235. Interestingly, tau peptides Val187-Gly204 and Val218-Gly235 induced tubulin self-assembly in a cold-reversible fashion, and incorporated into the assembled polymers. The specificity of the interaction of the tau peptide was supported by the competition of tau protein for the interaction with the tubulin polymer. In addition, the tau peptide appears to contain the principal antigenic determinant(s) recognized by anti-idiotypic antibodies that react with the tubulin binding domains on microtubule-associated proteins. The present findings together with the demonstration of the presence of multiple sites for the binding of the alpha(430-441) and beta(422-434) tubulin fragments to tau, and the existence of repetitive sequences on tau, strongly support the hypothesis that the region of tau defined by the repetitive sequences is involved in its interaction with tubulin.  相似文献   

9.
Small molecules such as indoles are attractive as inhibitors of tubulin polymerization. Thus a number of 2-phenylindole-3-carbaldehydes with lipophilic substituents in both aromatic rings was synthesized and evaluated for antitumor activity in MDA-MB 231 and MCF-7 breast cancer cells. Some 5-alkylindole derivatives with a 4-methoxy group in the 2-phenyl ring strongly inhibit the growth of breast cancer cells with IC(50) values of 5-20nM. Their action can be rationalized by the cell cycle arrest in G(2)/M phase due to the inhibition of tubulin polymerization.  相似文献   

10.
Combretastatin A-4 (CA-4), a natural stilbenoid isolated from Combretum caffrum, is a new vascular targeting agent (VTA) known for its antitumor activity due to its anti-tubulin properties. We investigated the molecular mechanisms leading to cell death in non-small cell lung cancer H460 cells induced by natural (CA-4) and synthetic stilbenoids (ST2151) structurally related to CA-4. We found that both compounds induced depolymerization and rearrangement of spindle microtubules, as well as an increasingly aberrant organization of metaphase chromosomes in a dose- and time-dependent manner. Prolonged exposition to ST2151 led cells to organize multiple sites of tubulin repolymerization, whereas tubulin repolymerization was observed only after CA-4 washout. H460 cells were arrested at a pro-metaphase stage, with condensed chromosomes and a triggered spindle assembly checkpoint, as evaluated by kinetochore localization of Bub1 and Mad1 antibodies. Persistent checkpoint activation led to mitochondrial membrane permeabilization (MMP) alterations, cytochrome c release, activation of caspase-9 and -3, PARP cleavage and DNA fragmentation. On the other hand, caspase-2, and -8 were not activated by the drug treatment. The ability of cells to reassemble tubulin in the presence of an activated checkpoint may be responsible for ST2151-induced multinucleation, a recognized sign of mitotic catastrophe. In conclusion, we believe that discovery of new agents able to trigger mitotic catastrophe cell death as a result of mitotic block and prolonged spindle checkpoint activation is particularly worthwhile, considering that tumor cells have a high proliferative rate and mitotic failure occurs irrespective of p53 status. Electronic Supplementary Material Supplementary material is available in the online version of this article at . Ilio Vitale and Antonio Antoccia contribuited equally to this work.  相似文献   

11.
Gupta K  Panda D 《Biochemistry》2002,41(43):13029-13038
The dietary flavonoid quercetin has a broad range of biological activities, including potent antitumor activity against several types of tumors. Recently, it has been shown that quercetin inhibits cancer cells proliferation by depleting cellular microtubules and perturbing cellular microtubule functions. However, the direct interactions of quercetin with tubulin and microtubules have not been examined so far. Here, we found that quercetin inhibited polymerization of microtubules and depolymerized microtubules made from purified tubulin in vitro. The binding of quercetin with tubulin was studied using quercetin fluorescence and intrinsic tryptophan fluorescence of tubulin. Quercetin bound to tubulin at a single site with a dissociation constant of 5-7 microM, and it specifically inhibited colchicine binding to tubulin but did not bind at the vinblastine site. In addition, quercetin perturbed the secondary structure of tubulin, and the binding of quercetin stimulated the intrinsic GTPase activity of soluble tubulin. Further, quercetin stabilized tubulin against decay and protected two cysteine residues of tubulin toward chemical modification by 5,5'-dithiobis-2-nitrobenzoic acid. Our data demonstrated that the binding of quercetin to tubulin induces conformational changes in tubulin and a mechanism through which quercetin could perturb microtubule polymerization dynamics has been proposed. The data suggest that quercetin inhibits cancer cells proliferation at least in part by perturbing microtubule functions through tubulin binding.  相似文献   

12.
We raised a strain of Leishmania donovani in the laboratory that was resistant to 500 nM taxol. The IC50 of the wild-type strain for taxol was 35 nM and that of the taxol-resistant strain (T-500) was 1 microM. The T-500 strain exhibited a Mdr phenotype; it was also resistant to other unrelated drugs like vinblastine, adriamycin and the commonly used antimonial drugs pentostam and glucantime. Verapamil (20 nM), a calcium channel blocker, was found to reverse the resistance of T-500 to taxol. Acquired resistance to taxol has been reported to be mediated by alterations involving tubulin in cancer cells. Thus polymerisation assays with tubulin fractions in wild-type versus taxol-resistant cells (T-500) were performed in vitro. The tubulin fraction from T-500 was more resistant to in vitro polymerisation than the tubulin isolated from the wild-type, suggesting that this is one means by which the parasite may acquire resistance to taxol.  相似文献   

13.
P Barbier  C Gregoire  F Devred  M Sarrazin  V Peyrot 《Biochemistry》2001,40(45):13510-13519
Cryptophycin 52 (C52) is a new synthetic compound of the cryptophycin family of antitumor agents that is currently undergoing clinical evaluation for cancer chemotherapy. The cryptophycin class of compounds acts on microtubules. This report details the mechanism by which C52 substoichiometrically inhibits tubulin self-assembly into microtubules. The inhibition data were analyzed through a model described by Perez-Ramirez [Perez-Ramirez, B., Andreu, J. M., Gorbunoff, M. J., and Timasheff, S. N. (1996) Biochemistry 35, 3277-3285]. We thereby determined the values of the apparent binding constant of the tubulin-C52 complex to the end of a growing microtubule (K(i)) and the apparent binding constant of C52 to tubulin (K(b)). The binding of C52 depended on tubulin concentration, and binding induced changes in the sedimentation pattern of tubulin, which indicates that C52 induces the self-association of tubulin and tubulin aggregates other than microtubules. Using analytical ultracentrifugation and electron microscopy, we show that C52 induces tubulin to form ring-shaped oligomers (single rings). We also show that C52 inhibits the formation of double rings from either GTP- or GDP-tubulin. In addition, the advances made by electron crystallography in understanding the structure of the tubulin and the microtubule allowed us to visualize the putative binding site of C52 and to reconstruct C52-induced ring oligomers by molecular modeling.  相似文献   

14.
Tau is a heat-stable microtubule-associated protein which promotes tubulin polymerization. The assembly promoting region of tau was localized using synthetic peptides modeled after domains found in both human and mouse tau. The design of these synthetic peptides was based on the triple repeat motif found in mouse tau. The first peptide, Tau-(187-204), and the second peptide, Tau-(218-235), are capable of promoting the polymerization of tubulin into microtubules, at concentrations above 100 microM. Two other peptides tested, TauR and Tau-(250-267), were not able to promote the assembly of tubulin over a range of concentrations up to 800 microM. TauR is a random analog of Tau-(187-204). Although TauR is unable to promote polymerization, it can modify Tau-(187-204)-induced tubulin assembly.  相似文献   

15.
Cells have evolved an autoregulatory mechanism to dampen variations in the concentration of tubulin monomer that is available to polymerize into microtubules (MTs), a process that is known as tubulin autoregulation. However, thermodynamic analysis of MT polymerization predicts that the concentration of free tubulin monomer must vary if MTs are to remain stable under different mechanical loads that result from changes in cell adhesion to the extracellular matrix (ECM). To determine how these seemingly contradictory regulatory mechanisms coexist in cells, we measured changes in the masses of tubulin monomer and polymer that resulted from altering cell-ECM contacts. Primary rat hepatocytes were cultured in chemically defined medium on bacteriological petri dishes that were precoated with different densities of laminin (LM). Increasing the LM density from low to high (1-1000 ng/cm2), promoted cell spreading (average projected cell area increased from 1200 to 6000 microns2) and resulted in formation of a greatly extended MT network. Nevertheless, the steady-state mass of tubulin polymer was similar at 48 h, regardless of cell shape or ECM density. In contrast, round hepatocytes on low LM contained a threefold higher mass of tubulin monomer when compared with spread cells on high LM. Furthermore, similar results were obtained whether LM, fibronectin, or type I collagen were used for cell attachment. Tubulin autoregulation appeared to function normally in these cells because tubulin mRNA levels and protein synthetic rates were greatly depressed in round cells that contained the highest level of free tubulin monomer. However, the rate of tubulin protein degradation slowed, causing the tubulin half-life to increase from approximately 24 to 55 h as the LM density was lowered from high to low and cell rounding was promoted. These results indicate that the set-point for the tubulin monomer mass in hepatocytes can be regulated by altering the density of ECM contacts and changing cell shape. This finding is consistent with a mechanism of MT regulation in which the ECM stabilizes MTs by both accepting transfer of mechanical loads and altering tubulin degradation in cells that continue to autoregulate tubulin synthesis.  相似文献   

16.
The phenylpiperazine derivative naftopidil is an α1-adrenoceptor (AR) antagonist that has been used clinically to treat benign prostatic hyperplasia. In our drug repositioning research, naftopidil shows the unique growth-inhibitory effects. Naftopidil inhibits cell cycle progression not only in cancer cells, but also in fibroblasts and vascular endothelial cells. Naftopidil-inhibited cell cycle progression is independent of α1-AR expression in cells. Therefore, the antiproliferative effects of naftopidil may be due to the off-target effects of the drug. In this study, we attempted to identify the off-target molecules of naftopidil using the magnetic nanobeads, ferrite glycidyl metharcrylate (FG) beads. Similar to naftopidil, its derivatives TG09-01 and TG09-02, which were introduced with amino groups for immobilizing to FG beads, inhibited cell growth in human HT29 colon adenocarcinoma cells. Both derivatives were associated with inhibition of cell cycle progression in HT29 cells. This observation is consistent with that seen with naftopidil. Using TG09-02-immobilized FG beads, α- and β-tubulins were identified as the specific binding proteins of naftopidil. The tubulin polymerization assay clearly indicated that naftopidil bound directly to tubulin and inhibited the polymerization of tubulin. Other phenylpiperazine derivatives, such as RS100329, BMY7378, and KN-62, also inhibited the polymerization of tubulin. These results suggest that phenylpiperazine derivatives including naftopidil may have broad spectrum of cellular cytotoxicity in various types of cells. In addition, the tubulin polymerization-inhibiting activity of phenylpiperazine derivatives may be a specific feature of the phenylpiperazine-based structure. These findings can allow us to design and synthesize new tubulin-binding drugs derived from naftopidil as a lead compound.  相似文献   

17.
Gupta K  Bishop J  Peck A  Brown J  Wilson L  Panda D 《Biochemistry》2004,43(21):6645-6655
The antifungal agent benomyl [methyl-1-(butylcarbamoyl)-2-benzimidazolecarbamate] is used throughout the world against a wide range of agricultural fungal diseases. In this paper, we investigated the interaction of benomyl with mammalian brain tubulin and microtubules. Using the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid, benomyl was found to bind to brain tubulin with a dissociation constant of 11.9 +/- 1.2 microM. Further, benomyl bound to at a novel site, distinct from the well-characterized colchicine and vinblastine binding sites. Benomyl altered the far-UV circular dichroism spectrum of tubulin and reduced the accessibility of its cysteine residues to modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating that benomyl binding to tubulin induces a conformational change in the tubulin. Benomyl inhibited the polymerization of brain tubulin into microtubules, with 50% inhibition occurring at a concentration of 70-75 microM. Furthermore, it strongly suppressed the dynamic instability behavior of individual brain microtubules in vitro as determined by video microscopy. It reduced the growing and shortening rates of the microtubules but did not alter the catastrophe or rescue frequencies. The unexpected potency of benomyl against mammalian microtubule polymerization and dynamics prompted us to investigate the effects of benomyl on HeLa cell proliferation and mitosis. Benomyl inhibited proliferation of the cells with an IC(50) of 5 microM, and it blocked mitotic spindle function by perturbing microtubule and chromosome organization. The greater than expected actions of benomyl on mammalian microtubules and mitosis together with its relatively low toxicity suggest that it might be useful as an adjuvant in cancer chemotherapy.  相似文献   

18.
Tubulin from Trypanosoma brucei was purified to near homogeneity using a protocol which involved treatment with urea with subsequent renaturation and was then used to immunize mice. Renatured tubulin further purified by SDS-PAGE (denatured), synthetic tubulin peptides (STP), and rat brain tubulin (RbTub) were also used. Immunized mice were challenged with T. brucei, Trypanosoma congolense or Trypanosoma rhodesiense. Renatured T. brucei tubulin (nTbTub) induced protection in all mice tested, of which 60-80% (n = 81) was complete and the remainder partial. Denatured T. brucei tubulin (dTbTub), STP, or RbTub induced lower antibody levels than nTbTub and did not offer protection. However, in culture, the antibodies against dTbTub or STP killed trypanosomes although at lower dilutions than nTbTub, but those against RbTub did not. In Western blots anti-trypanosome antibodies recognized the tubulin of all the trypanosome species investigated but not vertebrate tubulin, whereas the anti-RbTUB antibodies recognized both trypanosome and vertebrate tubulin. Of the five mice given passive immunity by the transfer of anti-nTbTub serum, four were completely protected and one partially protected. These data suggest that tubulin is the relevant immunogen in the preparation used and could therefore be a promising target for the development of a parasite-specific, broad spectrum vaccine.  相似文献   

19.
A new type of inhibitor of tubulin polymerization was discovered based on the 3-aroyl-2-arylbenzo[b]thiophene molecular skeleton. The lead compound in this series, 2-(4'-methoxyphenyl)-3-(3',4',5'-trimethoxybenzoyl)-6-methoxybe nzo[b]thiophene 1, inhibited tubulin polymerization, caused an increase in the mitotic index of CA46 Burkitt lymphoma cells, and inhibited the growth of several human cancer cell lines.  相似文献   

20.
A monoclonal antibody (GT335) directed against polyglutamylated tubulin was obtained by immunization with a synthetic peptide which mimics the structure of the polyglutamylated site of alpha-tubulin. This peptide corresponds to the C-terminal sequence Glu441-Gly448 and was chemically modified by the addition of two glutamyl units at Glu445. The specificity of GT335 was assayed by direct and competitive enzyme-linked immunosorbent assay (ELISA) against tubulin and several synthetic peptides differing either by the structure of the added polyglutamyl chain or by their amino acid sequence. Further characterization was carried out by immunoblotting detection after one- or two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The epitope appears to be formed by at least two constituents: a basic motif of monoglutamylation which is retained in the polyglutamylated forms independent of their degree of glutamylation, and some elements of the polypeptide chain close to the site of glutamylation. Given the specificity of GT335 and the delineation of its epitope, our results indicate that, in addition to alpha and beta' (class III)-tubulin, other beta-tubulin isotypes are also glutamylated. This antibody has been used to analyze the cell and tissue distributions of glutamylated tubulin. In mouse brain extracts, GT335 reacts strongly with alpha-tubulin and, to a lesser extent, with beta' (class III) and beta-tubulin. The same reactivity is also observed with cultured neurons whereas astroglial cells exhibit only low levels of glutamylated tubulin. In non-nervous mouse tissues such as spleen, lung or testis, glutamylation was shown to involve only beta-tubulin, but at far lower levels than in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号