首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The production of the acidic exopolysaccharide succinoglycan (EPS I) by Rhizobium meliloti exoP* mutants expressing an ExoP protein lacking its C-terminal cytoplasmic domain and by mutants characterized by specific amino acid substitutions in the proline-rich motif (RX4PX2PX4SPKX9IXGXMXGXG) located from positions 443 to 476 of the ExoP protein was analyzed. The absence of the C-terminal cytoplasmic ExoP domain (positions 484 to 786) and the substitution of both arginine443 by isoleucine443 and proline457 by serine457 within the proline-rich motif resulted in enhanced production of low-molecular-weight (LMW) EPS I at the expense of high-molecular-weight (HMW) EPS I. The ratios of HMW to LMW EPS I of the wild type and mutant strains increased with osmolarity.  相似文献   

2.
The membrane topology of the Rhizobium meliloti 2011 ExoP protein involved in polymerization and export of succinoglycan was analysed by translational fusions of lacZ and phoA reporter genes to the exoP gene. Based on this analysis, the ExoP protein could be divided into an N-terminal domain mainly located in the periplasmic space and a C-terminal domain located in the cytoplasm. Whereas the C-terminal domain of ExoP is characterized by a potential nucleotide-binding motif, the N-terminal ExoP domain contains the sequence motif‘PX2pX4SPKX11GXMXG1′, which is also present in proteins involved in the determination of O-antigen chain length. R. meliloti strains carrying mutated exoP* genes, exclusively encoding the N-terminal ExoP domain, produced a reduced amount of succinoglycan. This reduction could be suppressed by a mutation in the regulatory gene exoR. The ratio of low-molecular-weight to high-molecular-weight succinoglycan was significantly increased in the exoP* mutant strain. In the exoP*lexoR mutant strain only low-molecular-weight succinoglycan could be detected. Based on sequence homologies and similar hydropathic profiles, the N-terminal domain of ExoP was proposed to be a member of a protein family thought to be involved in polysaccharide chain-length determination.  相似文献   

3.
4.
The Rhizobium meliloti exoS gene is involved in regulating the production of succinoglycan, which plays a crucial role in the establishment of the symbiosis between R. meliloti Rm1021 and its host plant, alfalfa. The exoS96::Tn5 mutation causes the upregulation of the succinoglycan biosynthetic genes, thereby resulting in the overproduction of succinoglycan. Through cloning and sequencing, we found that the exoS gene is a close homolog of the Agrobacterium tumefaciens chvG gene, which has been proposed to encode the sensor protein of the ChvG-ChvI two-component regulatory system, a member of the EnvZ-OmpR family. Further analyses revealed the existence of a newly discovered A. tumefaciens chvI homolog located just upstream of the R. meliloti exoS gene. R. meliloti ChvI may serve as the response regulator of ExoS in a two-component regulatory system. By using ExoS-specific antibodies, it was found that the ExoS protein cofractionated with membrane proteins, suggesting that it is located in the cytoplasmic membrane. By using the same antibodies, it was shown that the exoS96::Tn5 allele encodes an N-terminal truncated derivative of ExoS. The cytoplasmic histidine kinase domain of ExoS was expressed in Escherichia coli and purified, as was the R. meliloti ChvI protein. The ChvI protein autophosphorylated in the presence of acetylphosphate, and the ExoS cytoplasmic domain fragment autophosphorylated at a histidine residue in the presence of ATP. The ChvI protein was phosphorylated in the presence of ATP only when the histidine kinase domain of ExoS was also present. We propose a model for regulation of succinoglycan production by R. meliloti through the ExoS-ChvI two-component regulatory system.  相似文献   

5.
6.
7.
Proteins encoded by oncogenes such as v-fps/fes, v-src, v-yes, v-abl, and v-fgr are cytoplasmic protein tyrosine kinases which, unlike transmembrane receptors, are localized to the inside of the cell. These proteins possess two contiguous regions of sequence identity: a C-terminal catalytic domain of 260 residues with homology to other tyrosine-specific and serine-threonine-specific protein kinases, and a unique domain of approximately 100 residues which is located N terminal to the kinase region and is absent from kinases that span the plasma membrane. In-frame linker insertion mutations in Fujinami avian sarcoma virus which introduced dipeptide insertions into the most stringently conserved segment of this N-terminal domain in P130gag-fps impaired the ability of Fujinami avian sarcoma virus to transform rat-2 cells. The P130gag-fps proteins encoded by these transformation-defective mutants were deficient in protein-tyrosine kinase activity in rat cells. However v-fps polypeptides derived from the mutant Fujinami avian sarcoma virus genomes and expressed in Escherichia coli as trpE-v-fps fusion proteins displayed essentially wild-type enzymatic activity, even though they contained the mutated sites. Deletion of the N-terminal domain from wild-type and mutant v-fps bacterial proteins had little effect on autophosphorylating activity. The conserved N-terminal domain of P130gag-fps is therefore not required for catalytic activity, but can profoundly influence the adjacent kinase region. The presence of this noncatalytic domain in all known cytoplasmic tyrosine kinases of higher and lower eucaryotes argues for an important biological function. The relative inactivity of the mutant proteins in rat-2 cells compared with bacteria suggests that the noncatalytic domain may direct specific interactions of the enzymatic region with cellular components that regulate or mediate tyrosine kinase function.  相似文献   

8.
9.
Rhizobium meliloti Rm1021 requires a Calcofluor-binding exopolysaccharide, termed succinoglycan or EPS I, to invade alfalfa nodules. We have determined that a strain carrying a mutation in the exoZ locus produces succinoglycan that lacks the acetyl substituent. The exoZ mutant nodules alfalfa normally.  相似文献   

10.
Abnormal protein accumulation and cell death with cytoplasmic vacuoles are hallmarks of several neurodegenerative disorders. We previously identified p97/valosin-containing protein (VCP), an AAA ATPase with two conserved ATPase domains (D1 and D2), as an interacting partner of the Machado-Joseph disease (MJD) protein with expanded polyglutamines that causes Machado-Joseph disease. To reveal its pathophysiological roles in neuronal cells, we focused on its ATPase activity. We constructed and characterized PC12 cells expressing wild-type p97/VCP and p97(K524A), a D2 domain mutant. The expression level, localization, and complex formation of both proteins were indistinguishable, but the ATPase activity of p97(K524A) was much lower than that of the wild type. p97(K524A) induced cytoplasmic vacuoles that stained with an endoplasmic reticulum (ER) marker, and accumulation of polyubiquitinated proteins in the nuclear and membrane but not cytoplasmic fractions was observed, together with the elevation of ER stress markers. These results show that p97/VCP is essential for degrading membrane-associated ubiquitinated proteins and that profound deficits in its ATPase activity severely affect ER quality control, leading to abnormal ER expansion and cell death. Excessive accumulation of misfolded proteins may inactivate p97/VCP in several neurodegenerative disorders, eventually leading to the neurodegenerations.  相似文献   

11.
beta-Dystroglycan is a ubiquitously expressed integral membrane protein that undergoes tyrosine phosphorylation in an adhesion-dependent manner. However, it remains unknown whether tyrosine-phosphorylated beta-dystroglycan interacts with SH2 domain containing proteins. Here, we show that the tyrosine phosphorylation of beta-dystroglycan is constitutively elevated in v-Src transformed cells. We next reconstituted this phosphorylation event in vivo by transiently coexpressing wild-type c-Src with a fusion protein containing full-length beta-dystroglycan. Our results demonstrate that Src-induced tyrosine phosphorylation of beta-dystroglycan is strictly dependent on the presence of a PPxY motif at its extreme C-terminus. In the nonphosphorylated state, this PPxY motif is normally recognized as a ligand by the WW domain; phosphorylation at this site blocks the binding of certain WW domain containing proteins. Using a GST fusion protein carrying the cytoplasmic tail of beta-dystroglycan, we identified five SH2 domain containing proteins that interact with beta-dystroglycan in a phosphorylation-dependent manner, including c-Src, Fyn, Csk, NCK, and SHC. We localized this binding activity to the PPxY motif by employing a panel of beta-dystroglycan-derived phosphopeptides. In addition, tyrosine phosphorylation of beta-dystroglycan in vivo resulted in the coimmunoprecipitation of the same SH2 domain containing proteins, and this binding event required the beta-dystroglycan C-terminal PPxY motif. We discuss the possibility that tyrosine phosphorylation of the PPxY motif within beta-dystroglycan may act as a regulatory switch to inhibit the binding of certain WW domain containing proteins, while recruiting SH2 domain containing proteins.  相似文献   

12.
We have prepared full-length Drosophila and human topoisomerase II and truncation constructs containing the amino-terminal ATPase domain, and we have analyzed their biochemical properties. The ATPase activity of the truncation proteins, similar to that of the full-length proteins, is greatly stimulated by the presence of DNA. This activity of the truncation proteins is also sensitive to the inhibition by the drug bisdioxopiperazine, ICRF-193, albeit at a much lower level than the full-length protein. Therefore, bisdioxopiperazine can directly interact with the NH(2)-terminal ATPase domain, but the drug-enzyme interaction may involve other domains as well. The ATPase activity of the ATPase domain protein showed a quadratic dependence on enzyme concentration, suggesting that dimerization of the NH(2)-terminal domain is a rate-limiting step. Using both protein cross-linking and sedimentation equilibrium analysis, we showed that the ATPase domain exists as a monomer in the absence of cofactors but can readily dimerize in the presence of a nonhydrolyzable analog of ATP, 5'-adenylyl-beta,gamma-imidodiphosphate. More interestingly, both ATP and ADP can also promote protein dimerization. This result thus suggests that the protein clamp, mediated through the dimerization of ATPase domain, remains closed after ATP hydrolysis and opens upon the dissociation of ADP.  相似文献   

13.
J P Beltzer  M Spiess 《The EMBO journal》1991,10(12):3735-3742
The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors.  相似文献   

14.
Sinorhizobium meliloti is a gram-negative soil bacterium capable of forming a symbiotic nitrogen-fixing relationship with its plant host, Medicago sativa. Various bacterially produced factors are essential for successful nodulation. For example, at least one of two exopolysaccharides produced by S. meliloti (succinoglycan or EPS II) is required for nodule invasion. Both of these polymers are produced in high- and low-molecular-weight (HMW and LMW, respectively) fractions; however, only the LMW forms of either succinoglycan or EPS II are active in nodule invasion. The production of LMW succinoglycan can be generated by direct synthesis or through the depolymerization of HMW products by the action of two specific endoglycanases, ExsH and ExoK. Here, we show that the ExpR/Sin quorum-sensing system in S. meliloti is involved in the regulation of genes responsible for succinoglycan biosynthesis as well as in the production of LMW succinoglycan. Therefore, quorum sensing, which has been shown to regulate the production of EPS II, also plays an important role in succinoglycan biosynthesis.  相似文献   

15.
The specialised ATPase FliI is central to export of flagellar axial protein subunits during flagellum assembly. We establish the normal cellular location of FliI and its regulatory accessory protein FliH in motile Salmonella typhimurium, and ascertain the regions involved in FliH(2)/FliI heterotrimerisation. Both FliI and FliH localised to the cytoplasmic membrane in the presence and in the absence of proteins making up the flagellar export machinery and basal body. Membrane association was tight, and FliI and FliH interacted with Escherichia coli phospholipids in vitro, both separately and as the preformed FliH(2)/FliI complex, in the presence or in the absence of ATP. Yeast two-hybrid analysis and pull-down assays revealed that the C-terminal half of FliH (H105-235) directs FliH homodimerisation, and interacts with the N-terminal region of FliI (I1-155), which in turn has an intra-molecular interaction with the remainder of the protein (I156-456) containing the ATPase domain. The FliH105-235 interaction with FliI was sufficient to exert the FliH-mediated down-regulation of ATPase activity. The basal ATPase activity of isolated FliI was stimulated tenfold by bacterial (acidic) phospholipids, such that activity was 100-fold higher than when bound by FliH in the absence of phospholipids. The results indicate similarities between FliI and the well-characterised SecA ATPase that energises general protein secretion. They suggest that FliI and FliH are intrinsically targeted to the inner membrane before contacting the flagellar secretion machinery, with both FliH105-235 and membrane phospholipids interacting with FliI to couple ATP hydrolysis to flagellum assembly.  相似文献   

16.
17.
Most receptor-like, transmembrane protein tyrosine phosphatases (PTPases), such as CD45 and the leukocyte common antigen-related (LAR) molecule, have two tandemly repeated PTPase domains in the cytoplasmic segment. The role of each PTPase domain in mediating PTPase activity remains unclear; however, it has been proposed that PTPase activity is associated with only the first of the two domains, PTPase domain 1, and the membrane-distal PTPase domain 2, which has no catalytic activity, would regulate substrate specificity. In this paper, we examine the function of each PTPase domain of LAR in vivo using a potential physiological substrate, namely insulin receptor, and LAR mutant proteins in which the conserved cysteine residue was changed to a serine residue in the active site of either or both PTPase domains. LAR associated with and preferentially dephosphorylated the insulin receptor that was tyrosine phosphorylated by insulin stimulation. Its association was mediated by PTPase domain 2, because the mutation of Cys-1813 to Ser in domain 2 resulted in weakening of the association. The Cys-1522 to Ser mutant protein, which is defective in the LAR PTPase domain 1 catalytic site, was tightly associated with tyrosine-phosphorylated insulin receptor, but failed to dephosphorylate it, indicating that LAR PTPase domain 1 is critical for dephosphorylation of tyrosine-phosphorylated insulin receptor. This hypothesis was further confirmed by using LAR mutants in which either PTPase domain 1 or domain 2 was deleted. Moreover, the association of the extracellular domains of both LAR and insulin receptor was supported by using the LAR mutant protein without the two PTPase domains. LAR was phosphorylated by insulin receptor tyrosine kinase and autodephosphorylated by the catalytic activity of the PTPase domain 1. These results indicate that each domain of LAR plays distinct functional roles through phosphorylation and dephosphorylation in vivo.  相似文献   

18.
The objective of this study was to investigate the effects of insulin and insulin-like growth factor I on transepithelial Na(+) transport across porcine glandular endometrial epithelial cells grown in primary culture. Insulin and insulin-like growth factor I acutely stimulated Na(+) transport two- to threefold by increasing Na(+)-K(+) ATPase transport activity and basolateral membrane K(+) conductance without increasing the apical membrane amiloride-sensitive Na(+) conductance. Long-term exposure to insulin for 4 d resulted in enhanced Na(+) absorption with a further increase in Na(+)-K(+) ATPase transport activity and an increase in apical membrane amiloride-sensitive Na(+) conductance. The effect of insulin on the Na(+)-K(+) ATPase was the result of an increase in V(max) for extracellular K(+) and intracellular Na(+), and an increase in affinity of the pump for Na(+). Immunohistochemical localization along with Western blot analysis of cultured porcine endometrial epithelial cells revealed the presence of alpha-1 and alpha-2 isoforms, but not the alpha-3 isoform of Na(+)-K(+) ATPase, which did not change in the presence of insulin. Insulin-stimulated Na(+) transport was inhibited by hydroxy-2-naphthalenylmethylphosphonic acid tris-acetoxymethyl ester [HNMPA-(AM)(3)], a specific inhibitor of insulin receptor tyrosine kinase activity, suggesting that the regulation of Na(+) transport by insulin involves receptor autophosphorylation. Pretreatment with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase as well as okadaic acid and calyculin A, inhibitors of protein phosphatase activity, also blocked the insulin-stimulated increase in short circuit and pump currents, suggesting that activation of phosphatidylinositol 3-kinase and subsequent stimulation of a protein phosphatase mediates the action of insulin on Na(+)-K(+) ATPase activation.  相似文献   

19.
For T cell activation, two signals are required, i.e., a T cell receptor (TCR)/CD3-mediated main signal and a CD28-mediated costimulatory signal. CD28 binds to its ligand (CD80 or CD86) and transduces the most important costimulatory signal. The cytoplasmic domain of the CD28 molecule, composed of 41 amino acids, does not contain any intrinsic enzyme activity. The cytoplasmic domain of CD28 is remarkably conserved among species and is associated with a number of signaling molecules that affect the main signal. We report here that a tyrosine phosphorylated 100-kDa protein (ppl00) was coupled to the CD28 cytoplasmic domain in Jurkat and human peripheral T cells. The pp100 was distinguished from other CD28 associated molecules such as Vav, STAT5, PI 3-kinase, Valosin-containing protein (VCP), Nucleolin, Gab2 (Grb2-associated binding protein 2), and STAT6. The tyrosine phosphorylation of pp100 coprecipitated with CD28 was enhanced by CD3 stimulation by the specific antibody, tyrosine phosphatase inhibitor and PKC activator. Tyrosine phosphorylation of pp100 was attenuated by the prior addition of PKC inhibitor. These findings indicate that pp100 is a novel tyrosine phosphorylated protein coupled to CD28 under continuous control of tyrosine phosphatases and might play a role in T cell activation augmented by a TCR/CD3-mediated main signal.  相似文献   

20.
The human bcr gene encodes a protein with serine/threonine kinase activity, CDC24/dbl homology, a GAP domain, and an SH2-binding region. However, the precise physiological functions of BCR are unknown. Coexpression of BCR with the cytoplasmic protein-tyrosine kinase encoded by the c-fes proto-oncogene in Sf-9 cells resulted in stable BCR-FES protein complex formation and tyrosine phosphorylation of BCR. Association involves the SH2 domain of FES and a novel binding domain localized to the first 347 amino acids of the FES N-terminal region. Deletion of the homologous N-terminal BCR-binding domain from v-fps, a fes-related transforming oncogene, abolished transforming activity and tyrosine phosphorylation of BCR in vivo. Tyrosine phosphorylation of BCR in v-fps-transformed cells induced its association with GRB-2/SOS, the RAS guanine nucleotide exchange factor complex. These data provide evidence that BCR couples the cytoplasmic protein-tyrosine kinase and RAS signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号