首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the elongation phase of spermiogenesis in the mouse, a layer of electron-dense material appears just below the posterior portion of the acrosomal zonule. Subsequently this material accumulates on the outer side of the nuclear envelope immediately subjacent to the caudal tip of the acrosomal zonule--the anlage of the future postnuclear band--as well as on the inner side of the plasma membrane vis-à-vis to this region--the anlage of the future postacrosomal dense lamina (PADL). Corresponding to further development the postacrosomal region of the nucleus becomes directly enveloped by the plasma membrane, and the PADL, situated on its inner side, grows adequately. The postnuclear band, however, staying the same size as in the preceding elongation phase, gets shifted to the caudal end of the PADL, where it closes the perinuclear space. Since the anlagen and the mature PADL and postnuclear band show the same cytochemical reactions as the dense basal plaque of the acrosomal zonule and the thin layer on the nuclear envelope vis-à-vis to it, a relationship between these structures can be assumed. Furthermore, the demonstration of ribonucleoproteins in all these structures is discussed in connection with a possible nucleolar genesis.  相似文献   

2.
Summary Spermatogenesis ofSchizomus palaciosi occurs in cysts in paired tubular testes located ventrally in the opisthosoma. Only few germ cells comprise one cyst. In early spermiogenesis an acrosomal complex composed of a spherical vacuole and a short acrosomal filament is established opposite of which a 9×2+3 flagellum emerges from a flagellar tunnel. The latter, however, is only a short-lasting structure. A manchette of microtubules surrounds nucleus and part of the acrosomal vacuole. The alterations in the arrangement of the microtubules during spermiogenesis are described. The spermatid finally is an elongate cell with a slender acrosomal vacuole on top of the helical nucleus. A deep implantation fossa filled with dense material is encountered. The acrosomal vacuole is accompanied by an intricate paracrosomal lattice structure not known at present of otherArachnida. This structure disappears during final spermiogenesis. The acrosomal filament (perforatorium) reveals filamentous subunits arranged in a regular pattern. Large ovoid mitochondria do not establish a distinct middle piece. Finally the elongate spermatid is coiled to form the mature spherical spermatozoon.The results are discussed under functional and taxonomical aspects.  相似文献   

3.
Summary A monoclonal antibody (MC41) was produced that specifically recognizes a sperm acrosomal antigen of approximately 165000 dalton in the rat. Rat testis was examined using a pre-embedding immunoperoxidase technique to reveal the pathway of the MC41 antigen to the acrosome during spermiogenesis. The MC41 immunoreaction appeared in several organelles of spermatids in a stage-specific manner: (1) in the endoplasmic reticulum (ER) throughout spermiogenesis, (2) in the outer acrosomal membrane from steps 9 to 19, (3) as a weak immunoreaction in the vesicular structures in the acrosomal matrix from steps 11 to 17, and (4) as a strong immunoreaction in the acrosomal matrix especially at the terminal step of spermiogenesis (step 19). However, no immunoreaction was observed in the Golgi region throughout spermiogenesis. These results suggest that the pathway of the MC41 antigen leads firstly from the ER to the outer acrosomal membrane and secondly to the acrosomal matrix. This pathway does not involve the Golgi apparatus and is referred to as the extra-Golgi pathway.  相似文献   

4.
周娜  常岩林  王莉 《昆虫学报》2012,55(4):395-402
为阐明F-肌动蛋白在优雅蝈螽Gampsocleis gratiosa Brunner von Wattenwyl精子形成过程中的动态变化, 本研究利用微分干涉相衬技术和免疫荧光技术首次对优雅蝈螽精子形成过程中的F-肌动蛋白进行了细胞定位, 利用透射电镜技术从超微水平观察了优雅蝈螽精子顶体复合体的结构。结果显示: 精子形成早期, F-肌动蛋白富集于亚顶体区域, 形态由“球状”转变为“棒锥状”; 精子形成中期, F-肌动蛋白呈“倒Y型”分布于亚顶体区域和细胞核前端两侧; 精子形成后期, 亚顶体区域的F 肌动蛋白解聚消失, F-肌动蛋白呈“箭头状”, 仅分布于顶体复合体扩张的两翼中。F-肌动蛋白动态变化伴随着细胞核和精子头部的形态改变, F-肌动蛋白的动态装配在精子顶体复合体形态构建和细胞核的形变中起着重要的作用。本研究还发现未成熟的精子尾部有一些富含F-肌动蛋白的细胞质微滴, 与精子形成过程中多余细胞质和细胞器的外排有关。F-肌动蛋白的动态变化研究为进一步阐明细胞骨架蛋白在昆虫精子形成过程中的功能和作用机制奠定了基础。  相似文献   

5.
The localization of proacrosin was determined by using colloidal gold labeling and electron microscopy of boar germ cells during spermiogenesis to post-ejaculation. Proacrosin was first localized in round spermatids during the Golgi phase of spermiogenesis; it was associated with the electron-dense granule, or acrosomal granule that was conspicuous within the acrosome. It remained within the acrosomal granule during the cap and acrosome phases of spermiogenesis. At these stages, there was no apparent association of the proacrosin molecule with the acrosomal membranes. During the maturation phase of spermiogenesis, proacrosin was seen to become dispersed into all regions of the acrosome except the equatorial segment. When sperm from different segments of the epididymis and ejaculated sperm were examined, localization was observed throughout the acrosome except for the equatorial segment. Here proacrosin appeared to be localized on both the inner and outer acrosomal membranes as well as with the acrosomal matrix, although further studies are required to verify the membrane localization. No labeling was seen on the plasma membrane. These data suggest that the synthesis and movement of proacrosin to sites in the acrosome are controlled by an as yet unknown process. The absence of proacrosin on the plasma membrane of mature ejaculated sperm makes it unlikely that this enzyme plays a role in sperm-zona adhesion prior to capacitation.  相似文献   

6.
Studies on the acrosome. X. Differentiation of the starfish acrosome   总被引:2,自引:1,他引:1  
The course of acrosomal differentiation observed during spermiogenesis in two starfishes shows that the central components of the mature acrosome are produced by Golgi activity. In the early spermatid, small Golgi-derived vesicles enter the hydrated acrosomal mass and appear to contribute their membrane constituents to the acrosomal-membrane precursor elements. A single lamella of smooth endoplasmic reticulum and fine-fibrillar material associated with it surround the membraneprecursor complex. In a drastic reorganization by which the spermatid acquires antero-posterior symmetry, the acrosome becomes embedded in the anterior part of the nucleus directly beneath the plasma membrane. All the other organelles congregate in the posterior cytoplasm; a thin layer of cytoplasm persists around the sides of the nucleus. During late spermiogenesis two additional acrosomal components become increasingly conspicuous. One is the layer of fine-fibrillar material associated with the smooth endoplasmic reticular vesicles surrounding the Golgi-derived elements. This material is finally pushed towards the center of the sperm head by a late accretion of fibrous product which appears to be synthesized throughout spermiogenesis by the ribosomes, and accumulates around the anterior part of the acrosome as the cytoplasmic matrix diminishes.  相似文献   

7.
The composition and distribution of rat acrosomal glycoproteins during spermiogenesis have been investigated at light and electron microscopic level by means of a variety of morphological techniques including the application of lectins conjugated to peroxidase, digoxigenin and colloidal gold, enzyme and chemical deglycosylation procedures and conventional histochemistry. Results obtained with lectin histochemistry in combination with beta-elimination reaction and endoglucosaminidase F/peptide N-glycosidase F digestion suggest that glycoproteins of mature acrosomes contain both N- and O-linked oligosaccharides. N-linked chains of acrosomal glycoproteins contain mannose and external residues of N-acetylglucosamine and galactose. They also have fucose residues linked to the core region of the oligosaccharide side chains. O-linked oligosaccharide chains contain external residues of both galactose and N-acetylgalactosamine. Mannose, fucose, galactose and N-acetylglucosamine residues were detected in acrosomes at all steps of spermiogenesis. N-acetylgalactosamine residues were only observed in the late steps of the spermiogenesis. N-acetylneuraminic acid residues were not detected throughout the acrosomal development. At initial stages of acrosome formation, glycoproteins were preferentially distributed over the acrosomic granules. In cap phase spermatids, lectin binding sites were homogeneously distributed throughout the acrosomes; however, in mature spermatozoa, glycoproteins were predominantly located over the outer acrosomal membrane.  相似文献   

8.
In the wobbler (WR) mouse, a neuromuscular mutant characterized by a motoneuron degeneration and male infertility, the cellular basis of the defect in spermiogenesis was studied by light and electron microscopy as well as by lectin binding. Spermatozoa of the wobbler mutant had rounded heads, and their motility was reduced. In histological sections of WR testes, spermatogenesis appeared normal up to the stage of round spermatids, but the elongation and flattening of the nucleus during late spermiogenesis did not occur. Numbers of spermatid nuclei in WR testes were reduced to 70%-80% of controls. The acrosomal marker glycoprotein, peanut agglutinin receptor, was synthesized, but the acrosomal membrane did not attach to the nucleus. The disturbance in spermiogenesis of the wobbler mouse is not due to impaired descent of the testis, nor to a lack of testosterone, and is distinct from that observed in other mouse mutants (quaking, QK; Purkinje cell degeneration, PCD) with combined neurological and spermiogenesis defects.  相似文献   

9.
Summary The composition and distribution of rat acrosomal glycoproteins during spermiogenesis have been investigated at light and electron microscopic level by means of a variety of morphological techniques including the application of lectins conjugated to peroxidase, digoxigenin and colloidal gold, enzyme and chemical deglycosylation procedures and conventional histochemistry. Results obtained with lectin histochemistry in combination with -elimination reaction and endoglucosaminidase F/peptide N-glycosidase F digestion suggest that glycoproteins of mature acrosomes contain both N- and O-linked oligosaccharides. N-linked chains of acrosomal glycoproteins contain mannose and external residues of N-acetylglucosamine and galactose. They also have fucose residues linked to the core region of the oligosaccharide side chains. O-linked oligosaccharide chains contain external residues of both galactose and N-acetylgalactosamine. Mannose, fucose, galactose and N-acetylglucosamine residues were detected in acrosomes at all steps of spermiogenesis. N-acetylgalactosamine residues were only observed in the late steps of the spermiogenesis. N-acetylneuraminic acid residues were not detected throughout the acrosomal development. At initial stages of acrosome formation, glycoproteins were preferentially distributed over the acrosomic granules. In cap phase spermatids, lectin binding sites were homogeneously distributed throughout the acrosomes; however, in mature spermatozoa, glycoproteins were predominantly located over the outer acrosomal membrane.  相似文献   

10.
Although the process of spermiogenesis has been described in many hemipteran species, no such studies at the ultrastructural level have been conducted upon species of the family Corizidae. Thus, the present investigation was initiated to study, by transmission and scanning electron microscopy, spermiogenesis in the boxelder bug, Leptocoris trivittatus (Hemiptera: Corizidae). Although early events, including acrosomal and nebenkern formation, are described, emphasis has been placed upon later events of spermiogenesis, such as acrosomal and mitochondrial transformations, and upon the morphology of the mature spermatozoon. The mature spermatozoon is a filiform structure which is composed of a head, flagellum, and endpiece. The head is comprised of an apical acrosome which extends lateral to a rod-shaped, condensed nucleus. The flagellum contains an axoneme, exhibiting a 9 + 9 + 2 pattern, and paired mitochondrial derivatives. Definitive mitochondrial derivatives are characterized by periodically arranged (45-nm period) cristae and a paracrystalline material within the matrix. Although the mitochondrial derivatives flank the axoneme for most of the spermatozoan length, they are not present in the endpiece of the spermatozoon.  相似文献   

11.
BackgroundKnowledge of spermiogenesis in reptiles, especially in lizards, is very limited. Lizards found in Arabian deserts have not been considered for detailed studies due to many reasons and the paucity of these animals. Therefore, we designed a study on the differentiation and morphogenesis of spermiogenesis, at an ultrastructural level, in a rare lizard species, Scincus scincus.ResultsThe spermiogenesis process includes the development of an acrosomal vesicle, aggregation of acrosomal granules, formation of subacrosomal nuclear space, and nuclear elongation. A role for manchette microtubules was described in nuclear shaping and organelle movement. During head differentiation, the fine granular chromatin of the early spermatid is gradually replaced by highly condensed contents in a process called chromatin condensation. Furthermore, ultrastructural features of sperm tail differentiation in S. scincus were described in detail. The commencement was with caudal migration toward centrioles, insertion of the proximal centriole in the nuclear fossa, and extension of the distal centrioles to form the microtubular axoneme. Subsequently, tail differentiation consists of the enlargement of neck portion, middle piece, the main and end pieces.ConclusionsThis study aids in the understanding of different aspects of spermiogenesis in the lizard family and unfurls evolutionary links within and outside reptiles.  相似文献   

12.
U. Fischer 《Zoomorphology》1994,114(4):213-225
Summary Spermatogenesis and sperm ultrastructure of the macrodasyidan gastrotrich Cephalodasys maximus are described by means of transmission electron microscopy. The filiform sperm consists of an acrosomal accessory structure and an acrosomal vesicle, both being surrounded by spiralled material. The successive nuclear helix encloses the spiral-shaped mitochondrion and the axoneme of the flagellum is accompanied by dense strings, three helical elements and peripheral microtubules. During spermiogenesis the acrosomal accessory structure develops first and moves into a cell projection, where the spiral around this acrosomal rod forms. A nuclear section with condensed chromatin and one single fused large mitochondrion follow into the extension, becoming helical. A connecting clasp between nucleus and flagellum shortens to a cap-like structure. Parallel to the acrosomal and nuclear projection the flagellum develops where the spiralled elements and the basal plate form in succession, while the basal body shrinks.  相似文献   

13.
14.
Ultrastructural changes during spermiogenesis in the flatworm, Notoplana japonica were studied with special attention to organizing process of an acrosome and flagella. During spermiogenesis, the G olgi complex develops conspicuously but it fails to organize the structure of an acrosomal vesicle. Consequently, no acrosome is formed at the apex of the sperm. As a substitute for an acrosomal structure, the slender process at the tip of the mature sperm is prominently occupied with glycogen granules.
The axoneme of the flagellum is formed from the basal body in the protrusion which is juxtaposed to the nucleus of the early spermatid. Two flagella associated with an electron-dense structure (EDS) extend superficially from the spermatid body in opposite directions. Progressively, they take an acute angle to each other and finally run alongside the sperm body. The axoneme consits of nine peripheral doublets with arms, a central cylinder containing an electron dense core, a less dense intermediate zone and fine spokes between the cylinder and doublets.  相似文献   

15.
This report describes the “crater defect” in human spermatozoa, a malformation that consists of a nuclear and acrosomal invagination present in 100% of the cells, whereas tail structure and motility are fairly normal. The defect occurs during spermiogenesis. A possible concomitance with abnormalities in the microtubular apparatus involved in the sperm molding is discussed.  相似文献   

16.
The final stages of spermiogenesis in ticks occur in the female genital tract. Scanning electron microscopy was used to follow the morphologic changes that occur in the sperm during this post-ejaculatory spermiogenesis in the African soft tick, Ornithodoros moubata, and to determine a time sequence for its occurrence in vivo. Characteristic features of the maturing and mature cell described include (1) differentiation and detachment of the operculum, (2) changes in cell shape corresponding to different developmental stages, (3) passive migration of the nucleus and acrosome from an anterior to a posterior position, and (4) eversion of that portion of the acrosomal canal containing the nucleus and acrosome. A possible fate for the remainder of the acrosomal canal is suggested by extrusion and detachment of spherical structures, the ‘posterior bubbles’, from the posterior end of the mature supermatozoon. A mechanism for cellular elongation resulting from contractions of the outer sheath is proposed.  相似文献   

17.
A fine structure study of spermatids and spermatozoa of the spider, Pisaurina sp. demonstrates that early spermiogenesis is similar to other flagellate spermatozoa. An acrosome forms from a Golgi-derived, acrosomal vesicle, a perforatorium indents acromosome and nucleus, a flagellum with a three-plus-nine tubule substructure is formed and nuclear chromatin condenses during spermiogenesis. Divergence from typical spermatozoa includes the presence of a three-tubule substructure of the central flagellar shaft, progressive rounding-up of late spermatids with concomitant incorporation of previously formed flagellum. This evidence is presented in terms of its possible functional significance in fertilization and gamete fusion in spiders.  相似文献   

18.
19.
Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.  相似文献   

20.
SPACA1 is a membrane protein that localizes in the equatorial segment of spermatozoa in mammals and is reported to function in sperm-egg fusion. We produced a Spaca1 gene-disrupted mouse line and found that the male mice were infertile. The cause of this sterility was abnormal shaping of the sperm head reminiscent of globozoospermia in humans. Disruption of Spaca1 led to the disappearance of the nuclear plate, a dense lining of the nuclear envelope facing the inner acrosomal membrane. This coincided with the failure of acrosomal expansion during spermiogenesis and resulted in the degeneration and disappearance of the acrosome in mature spermatozoa. Thus, these findings clarify part of the cascade leading to globozoospermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号