首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures.  相似文献   

3.
4.
We have studied the sample concentration-dependent and external stress-dependent stability of native and reconstituted nucleosomal arrays. Whereas upon stretching a single chromatin fiber in a solution of very low chromatin concentration the statistical distribution of DNA length released upon nucleosome unfolding shows only one population centered around approximately 25 nm, in nucleosome stabilizing conditions a second population with average length of approximately 50 nm was observed. Using radioactively labeled histone H3 and H2B, we demonstrate that upon lowering the chromatin concentration to very low values, first the linker histones are released, followed by the H2A-H2B dimer, whereas the H3-H4 tetramer remains stably attached to DNA even at the lowest concentration studied. The nucleosomal arrays reconstituted on a 5 S rDNA tandem repeat exhibited similar behavior. This suggests that the 25-nm disruption length is a consequence of the histone H2A-H2B dimer dissociation from the histone octamer. In nucleosome stabilizing conditions, a full approximately 145 bp is constrained in the nucleosome. Our data demonstrate that the nucleosome stability and histone octamer integrity can be severely degraded in experiments where the sample concentration is low.  相似文献   

5.
6.
We have mapped in vitro nucleosome positioning on the sheep β-lactoglobulin gene using high-throughput sequencing to characterise the DNA sequences recovered from reconstituted nucleosomes. This methodology surpasses previous approaches for coverage, accuracy and resolution and, most importantly, offers a simple yet rapid and relatively inexpensive method to characterise genomic DNA sequences in terms of nucleosome positioning capacity. We demonstrate an unambiguous correspondence between in vitro and in vivo nucleosome positioning around the promoter of the gene; identify discrete, sequence-specific nucleosomal structures above the level of the canonical core particle—a feature that has implications for regulatory protein access and higher-order chromatin packing; and reveal new insights into the involvement of periodically organised dinucleotide sequence motifs of the type GG and CC and not AA and TT, as determinants of nucleosome positioning—an observation that supports the idea that the core histone octamer can exploit different patterns of sequence organisation, or structural potential, in the DNA to bring about nucleosome positioning.  相似文献   

7.
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.  相似文献   

8.
9.
Although it is well established that the majority of eukaryotic DNA is sequestered as nucleosomes, the higher-order structure resulting from nucleosome interactions as well as the dynamics of nucleosome stability are not as well understood. To characterize the structural and functional contribution of individual nucleosomal sites, we have developed a chromatin model system containing up to four nucleosomes, where the array composition, saturation, and length can be varied via the ordered ligation of distinct mononucleosomes. Using this system we find that the ligated tetranucleosomal arrays undergo intra-array compaction. However, this compaction is less extensive than for longer arrays and is histone H4 tail-independent, suggesting that well ordered stretches of four or fewer nucleosomes do not fully compact to the 30-nm fiber. Like longer arrays, the tetranucleosomal arrays exhibit cooperative self-association to form species composed of many copies of the array. This propensity for self-association decreases when the fraction of nucleosomes lacking H4 tails is systematically increased. However, even tetranucleosomal arrays with only two octamers possessing H4 tails recapitulate most of the inter-array self-association. Varying array length shows that systems as short as dinucleosomes demonstrate significant self-association, confirming that relatively few determinants are required for inter-array interactions and suggesting that in vivo multiple interactions of short runs of nucleosomes might contribute to complex fiber-fiber interactions. Additionally, we find that the stability of nucleosomes toward octamer loss increases with array length and saturation, suggesting that in vivo stretches of ordered, saturated nucleosomes could serve to protect these regions from histone ejection.  相似文献   

10.
Many studies indirectly indicate that the conformation ofin vivo duplex DNA is the double helix. The most direct view, from the X-ray analysis of the nucleosome core particle, has also been interpreted in terms of the double helix structure. However, an alternative possibility exists; that the duplex adopts a metastable side-by-side conformation which readily converts to the double helix on removal of protein. Evidence for the existence of this conformation has been obtained from a reanalysis of the electron density map for the nucleosome particle.  相似文献   

11.
Nucleosome positioning plays a key role in genomic regulation by defining histone-DNA context and by modulating access to specific sites. Moreover, the histone-DNA register influences the double-helix structure, which in turn can affect the association of small molecules and protein factors. Analysis of genomic and synthetic DNA has revealed sequence motifs that direct nucleosome positioning in vitro; thus, establishing the basis for the DNA sequence dependence of positioning would shed light on the mechanics of the double helix and its contribution to chromatin structure in vivo. However, acquisition of well-diffracting nucleosome core particle (NCP) crystals is extremely dependent on the DNA fragment used for assembly, and all previous NCP crystal structures have been based on human α-satellite sequences. Here, we describe the crystal structures of Xenopus NCPs containing one of the strongest known histone octamer binding and positioning sequences, the so-called ‘601’ DNA.Two distinct 145-bp 601 crystal forms display the same histone-DNA register, which coincides with the occurrence of DNA stretching-overtwisting in both halves of the particle around five double-helical turns from the nucleosome center, giving the DNA an ‘effective length’ of 147 bp. As we have found previously with stretching around two turns from the nucleosome center for a centromere-based sequence, the terminal stretching observed in the 601 constructs is associated with extreme kinking into the minor groove at purine-purine (pyrimidine-pyrimidine) dinucleotide steps. In other contexts, these step types display an overall nonflexible behavior, which raises the possibility that DNA stretching in the nucleosome or extreme distortions in general have unique sequence dependency characteristics. Our findings indicate that DNA stretching is an intrinsically predisposed site-specific property of the nucleosome and suggest how NCP crystal structures with diverse DNA sequences can be obtained.  相似文献   

12.
The core histone tail domains play important roles in different stages of chromatin condensation. The tails are required for folding nucleosome arrays into secondary chromatin structures such as the approximately 30 nm diameter chromatin fiber and for mediating fiber-fiber interactions important for formation of tertiary chromatin structures. Crosslinking studies have demonstrated that inter-nucleosomal tail-DNA contacts appear in conjunction with salt-induced folding of nucleosome arrays into in higher order chromatin structures. However, since both folding of nucleosome arrays and fiber-fiber interactions take place simultaneously in >2-3 mM MgCl(2) such inter-nucleosome interactions may reflect short range (intra-array) or longer range (inter-array) interactions. Here, we describe a novel technique to specifically identify inter-array interactions mediated by the histone tail domains. In addition, we describe a new method for the preparation of H3/H4 tetramers.  相似文献   

13.
The sternocostal and clavicular regions of the pectoralis major are independently harvested to provide shoulder stability, but surgical decision making does not consider the biomechanical consequences that disinsertion of one fiber region over the other has on shoulder function. Differences in material properties between the fiber regions could influence which tissue is more optimal for surgical harvesting. The current study utilized ultrasound shear wave elastography (SWE) to investigate whether the in vivo material properties differ between the fiber regions. Shear wave velocities (SWVs) were collected from the sternocostal and clavicular fiber regions of the pectoralis major from ten healthy young male participants. Participants produced isometric shoulder torques of varying magnitudes (passive, 15%, and 30% MVC) and directions (horizontal and vertical adduction). Four shoulder positions encompassing different vertical abduction and external rotation angles were examined. One-way ANOVAs tested the hypotheses that differences in SWVs during rest existed between the fiber regions as a function of shoulder position, and differences in SWVs during contraction existed as a function of shoulder position and torque direction. In all shoulder positions, the clavicular region exhibited greater SWVs during rest than the sternocostal region (P < 0.001). In shoulder positions that did not include external rotation, the clavicular region exhibited greater SWVs during contraction when producing horizontal adduction torques (P < 0.001), while the sternocostal region exhibited greater SWVs during contraction when producing vertical adduction torques at 30% MVC (P < 0.01). Our results suggest that each fiber region of the pectoralis major provides unique contributions to passive and active shoulder function.  相似文献   

14.
15.
MENT is a developmentally regulated heterochromatin-associated protein that condenses chromatin in terminally differentiated avian blood cells. Its homology to the serpin protein family suggests that the conserved serpin reactive center loop (RCL) and the unique M-loop are important for its function. To examine the role of these domains, we studied the interaction of wild-type and mutant MENT with naked DNA and biochemically defined nucleosome arrays reconstituted from 12-mer repeats containing nucleosome positioning sequences. Wild-type MENT folded the naked DNA duplexes into closely juxtaposed parallel structures ("tramlines"). Deletion of the M-loop, but not inactivation of the RCL, prevented tramline formation and the cooperative interaction of MENT with DNA. Reconstitution of wild-type MENT with nucleosome arrays caused their tight folding and self-association. M-loop deletion inhibited nucleosome array folding, whereas the inactive RCL mutant was competent to fold the nucleosome arrays, but had a significantly impaired ability to cause their self-association. Bifunctional chemical cross-linking of MENT revealed oligomerization of wild-type MENT in the presence of chromatin and DNA. This oligomerization was severely reduced in the RCL mutant. We propose that the mechanism of MENT-induced heterochromatin formation involves two independent events: bringing together nucleosome linkers within a chromatin fiber and formation of protein bridges between chromatin fibers. Ordered binding of MENT to linker DNA via its unique M-loop domain promotes the folding of chromatin, whereas bridging of chromatin fibers is facilitated by MENT oligomerization mediated by the RCL.  相似文献   

16.
Xu  Peng  Mahamid  Julia  Dombrowski  Marco  Baumeister  Wolfgang  Olins  Ada L.  Olins  Donald E. 《Chromosoma》2021,130(2-3):91-102

“Interphase epichromatin” describes the surface of chromatin located adjacent to the interphase nuclear envelope. It was discovered in 2011 using a bivalent anti-nucleosome antibody (mAb PL2-6), now known to be directed against the nucleosome acidic patch. The molecular structure of interphase epichromatin is unknown, but is thought to be heterochromatic with a high density of “exposed” acidic patches. In the 1960s, transmission electron microscopy of fixed, dehydrated, sectioned, and stained inactive chromatin revealed “unit threads,” frequently organized into parallel arrays at the nuclear envelope, which were interpreted as regular helices with ~ 30-nm center-to-center distance. Also observed in certain cell types, the nuclear envelope forms a “sandwich” around a layer of closely packed unit threads (ELCS, envelope-limited chromatin sheets). Discovery of the nucleosome in 1974 led to revised helical models of chromatin. But these models became very controversial and the existence of in situ 30-nm chromatin fibers has been challenged. Development of cryo-electron microscopy (Cryo-EM) gave hope that in situ chromatin fibers, devoid of artifacts, could be structurally defined. Combining a contrast-enhancing phase plate and cryo-electron tomography (Cryo-ET), it is now possible to visualize chromatin in a “close-to-native” situation. ELCS are particularly interesting to study by Cryo-ET. The chromatin sheet appears to have two layers of ~ 30-nm chromatin fibers arranged in a criss-crossed pattern. The chromatin in ELCS is continuous with adjacent interphase epichromatin. It appears that hydrated ~ 30-nm chromatin fibers are quite rare in most cells, possibly confined to interphase epichromatin at the nuclear envelope.

  相似文献   

17.
18.
Even though the spermatozoa of several strepsipteran species were described earlier, no data were available for the basal family Mengenillidae. Well-fixed material of the recently described Tunisian species Mengenilla moldrzyki was used for a detailed examination of the sperm ultrastructure. The total length is c. 30 μm. The head region contains a conical acrosome vesicle (0.3-0.35 μm) and an elongated nucleus (7.3 μm) with dense chromatin. Some granular material along with a uniformely dense centriole adjunct and two mitochondrial derivatives are visible at the posterior end of the nucleus. The material of the centriole adjunct does not extend along the flagellum and accessory bodies are absent. The mitochondrial derivatives are elongated structures crossed by a longitudinal crista but lacking parallel transverse cristae and paracrystalline material in the dense matrix. The mitochondrial derivatives gradually reduce their size and end at the most posterior tail region. The flagellar axoneme has a 9 + 9 + 2 pattern and originates beneath the nucleus. In the terminal tail region the axoneme gradually disintegrates. Despite the extreme specialization of the endoparasitc group, strepsipteran spermatozoa are mostly characterized by plesiomorphies. The pattern within the order is largely uniform, but Mengenilla displays several apomorphic features compared to the presumptive strepsipteran groundplan (e.g., absence of crystallizations and cristae in the mitochondrial derivatives). The subdivision of the intertubular material into two compartments with a dense beak-like structure adhering to the tubular wall supports a clade Coleopterida (=Strepsiptera + Coleoptera) + Neuropterida.  相似文献   

19.
A major question in chromatin involves the exact organization of nucleosomes within the 30-nm chromatin fiber and its structural determinants of assembly. Here we investigate the structure of histone octamer helical tubes via the method of iterative helical real-space reconstruction. Accurate placement of the x-ray structure of the histone octamer within the reconstructed density yields a pseudoatomic model for the entire helix, and allows precise identification of molecular interactions between neighboring octamers. One such interaction that would not be obscured by DNA in the nucleosome consists of a twofold symmetric four-helix bundle formed between pairs of H2B-α3 and H2B-αC helices of neighboring octamers. We believe that this interface can act as an internucleosomal four-helix bundle within the context of the chromatin fiber. The potential relevance of this interface in the folding of the 30-nm chromatin fiber is discussed.  相似文献   

20.
Nucleosomes in metaphase chromosomes.   总被引:4,自引:2,他引:2       下载免费PDF全文
Previous studies of the structure of metaphase chromosomes have relied heavily on electron micrography and have revealed the existence of a 10-nm unit fiber that is thought to generate the native 23-30-nm fiber by higher order folding. The structural relationship of these metaphase fibers to the interphase fiber remains obscure. Recent studies on the digestion of interphase chromatin have revealed the existence of a regularly repeating subunit of DNA and histone, the nucleosome that generates the appearance of 10-nm beads connected by a short fiber of DNA seen on electron micrographs. It was therefore of interest to probe the structure of the metaphase chromosome for the presence of nucleosomal subunits. To this end metaphase chromosomes were prepared from colchicine-arrested cultures of mouse L-cells and were subjected to digestion with stayphylococcal nuclease. Comparison of the early and limit digestion products of metaphase chromosomes with those obtained from interphase nuclei indicates that although significant morphologic changes occur within the chromatin fiber during mitosis, the basic subunit structure of the chromatin fiber is retained by the mitotic chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号