首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for an exocrine function of theAplysia atrial gland   总被引:1,自引:0,他引:1  
Summary The fact that the atrial gland ofAplysia californica contains peptides that will induce egg laying when injected into mature animals prompts consideration of the role played by the gland in the normal physiology of the animal. We have approached this consideration with a combination of morphologic and physiologic investigations. Morphologic study reveals the gland as a stratified epithelium comprised of three cell types. The only evidence for secretory activity was seen in the columnar epithelial cells containing large vesicular inclusions. These cells appear to discharge their secretory product into the lumen of the large hermaphroditic duct. While we cannot specify the contents of the secretion from the columnar cells, perfusate of the duct lumen contained bioassay active material only when the duct was exposed to depolarizing conditions. Though additional experiments in which exogenously administered atrial gland peptides were found to initiate egg laying in animals from which the source of the egg laying neurohormone had been extirpated, it appears likely that the atrial gland substances are not endocrine factors. Instead, their function must be sought among the exocrine products of the duct epithelium.Abbreviations FWS filtered artificial sea water - LHD large hermaphroditic duct Technical assistance for these studies was ably provided by Eugene Dannen and Gary Whitney. The surgical procedures were developed by Greg Thayer. Funding for the work was provided by NIH grant NS 11149 to S.A.  相似文献   

2.
The secretory processes in the shell gland of laying chickens were the subject of this study. Three cell types contribute secretory material to the forming egg: ciliated and non-ciliated columnar cells of the uterine surface epithelium, and cells of tubular glands in the mucosa. The ciliated cells as well as the non-ciliated cells have microvilli, which undergo changes in form and extent during the secretory cycle. At the final stages of shell formation they resemble stereocilia. It is postulated that the microvilli of both cells are active in the production of the cuticle of the shell. The ciliated cell which has both cilia and microvilli manufactures secretory granules which arise from the Golgi complex in varying amounts throughout the egg laying cycle. Granule production reaches its greatest intensity during the early stages of shell deposition. The ciliated cell probably supplies proteinaceous material to the matrix of the forming egg shell. The non-ciliated cell has only microvilli. Secretory granules, containing an acid mucopolysaccharide, arise from the Golgi complex. Some granules are extruded into the uterine lumen where they supply the egg shell with organic matrix. Others migrate towards the supranuclear zone. Here a number of them disintegrate. This is accompanied by the formation of a large membraneless space, which is termed “vacuoloid.” Subsequently the vacuoloid regresses and during regression an extensive rough endoplasmic reticulum with numerous polyribosomes of spiral configuration appears. It is suggested that material in the vacuoloid originating from the disintegrating granules is resynthesized and utilized for the formation of secretory product. The uterine tubular gland cells have irregular, frondlike microvilli. During egg shell deposition, these microvilli form large blebs and are probably related to the elaboration of a watery, calcium-containing fluid.  相似文献   

3.
The ultrastructural changes occurring in the fully functional oviduct of Isa Brown laying hens were studied during various stages of the laying cycle. Hens were killed at different positions of the egg in the oviduct. The oviduct was lined by ciliated and non-ciliated cells (also referred to as granular cells). The granular cells in the infundibulum contributed to secretion during egg formation, whereas ciliated cells showed little evidence of secretion. Ultrastructural changes were recorded in the granular and glandular cells of the distal infundibulum. In the magnum, the surface ultrastructure revealed glandular openings associated with the ciliated and granular cells. Cyclic changes were recorded in the glandular cells of the magnum. With respect to the three observed types of glands, the structure of gland type A and C cells varied at different egg positions in the oviduct, whereas type B cells represented a different type of gland cell containing amorphous secretory granules. The surface epithelium of the isthmus was also lined by mitochondrial cells. Two types of glandular cell (types 1 and 2) were recorded in the isthmus during the laying cycle. Intracisternal granules were found in type 2 cells of the isthmus. A predominance of glycogen particles occurred in the tubular shell gland. The granular cells in the shell gland contain many vacuoles. During egg formation, these vacuoles regressed following the formation of extensive rough endoplasmic reticulum; the reverse also occurred. The disintegrated material found in the vacuoles may have been derived from the disintegrating granules. The Physiology Teaching Unit, University of New England, provided financial support to K. Chousalkar for this study.  相似文献   

4.
A study of the ‘antecubital organ’ of the slow loris (Nycticebus coucang coucang), was undertaken in light and electron microscopes. As distinct from other prosimian primates there is a complete absence of interstitial cells in the gland suggesting its different functional role. The acinar cells in the ‘antecubital organ’ of slow loris contain large number of smooth ER and electron-dense secretory granules. The granules are seen both in the apical region of the cells as well as in their basal cytoplasmic processes. Some of these processes appear to terminate close to a blood capillary. The structural features of the ‘antecubital organ’ of slow loris suggest that it is a mixed gland of both exocrine and endocrine nature.  相似文献   

5.
Summary Previous investigators have reported that albuminous material in the albumin-secreting (tubular gland) cells of the magnum of hen oviduct accumulates in the ergastoplasmic cisternae and is released directly into the glandular lumen without being first concentrated into secretory granules in the Golgi region (Zeigel and Dalton, 1962). Present fine structural studies on the tubular gland cells in oviducts from actively laying wild-type Japanese quail and in an oviduct from an actively laying hen indicate that the Golgi apparatus is directly involved in the formation of secretory granules. At least three types of granules can be observed in the tubular gland cells at various times, and all types seem to be associated initially with the Golgi apparatus.In actively laying quail, the distribution of electron opaque, intermediate, and light granules within the superficial and deep regions of the glandular epithelium varies, depending on the presence of an egg in a particular region of the oviduct. Secretion of the product is merocrine, involving fusion of granule membranes with the plasmalemma of the cell surface.Granules first appear in the tubular gland cells of quail oviducts at about 4 1/2 weeks of age. The granules are of the electron opaque type and probably represent secretion in concentrated storage form. At this age, a few of the tubular gland cells exhibit distended ergastoplasmic cisternae containing material of low electron density. The appearance of these light cells, which occur with greater frequency in oviducts from older quail, probably reflects an increased level of secretory activity initiated by changes in hormonal levels. From 5 weeks of age on, intermediate and light (less concentrated) granules, as well as dark granules, are present.Supported by the National and Medical Research Councils of Canada.  相似文献   

6.
The ultrastructure of three types of gland cells of embryos and free-swimming larvae of Austramphilina elongata is described. Type I gland cells contain large, more or less round electron-dense granules which are formed by numerous Golgi complexes. Type II gland cells contain thread-like, membrane-bound secretory granules with longitudinally arranged microtubules inside the granules; secretory droplets are produced by Golgi complexes and the microtubules apparently condense in the cytoplasm or in the droplets. Type III gland cells contain irregular-ovoid membrane-bound granules with coiled up microtubules which have an electron-dense core; the granules are formed by secretionderived from Golgi complexes and the microtubules aggregate around and migrate into the secretion; microtubules are at first hollow and the early secretory granules have a central electron-dense region.  相似文献   

7.
R T Hess  J A Vena 《Tissue & cell》1974,6(3):503-514
The clitellum of the annelid worm Enchytraeus fragmentosus was found to consist of two distinctive granular cell types in addition to the cells typically found within the epidermis. One cell type possessed granules containing microtubules. The other cell type had large secretory granules which fused and filled most of the cell. The contents of these granules were established to be responsible for the secretion of the cocoon wall and the nutritive substance surrounding the egg.  相似文献   

8.
The atrial gland is an exocrine organ that secretes into the oviduct of Aplysia californica and expresses three homologous genes belonging to the egglaying hormone gene family. Although post-translational processing of the egg-laying hormone precursor in the neuroendocrine bag cells has been examined in detail, relatively little is known about the post-translational processing of egg-laying hormone-related gene products in the atrial gland. A combination of morphologic techniques that included light-microscopic histology and immunocytochemistry, transmission electron microscopy, and immuno-electron microscopy were used to localize egg-laying hormone-related peptides in the atrial gland and to evaluate the characteristic morphology of their secretory cells. Results of these studies showed that there were at least three major types of secretory cells in the atrial gland (types 1–3). Significantly, of these three cell types, only type 1 was immunoreactive to antisera against egg-laying hormone-related precursor peptides. The immunoreactivity studies established that all three egg-laying hormone-related precursor genes are expressed in type-1 cells and indicated that the processing of these precursors also occurs within the secretory granules of this cell type. Evidence was also obtained that proteolytic processing of the egg-laying hormone-related precursors differed significantly from that observed in the bag cells. In contrast to the bag cells, the NH2-terminal and COOH-terminal products of the egg-laying hormone-related precursors of the atrial gland were not sorted into different types of vesicles.  相似文献   

9.
A pair of rosette glands (one of the tegumental glands in crustaceans) is present at the root of the dorsal spine of the thorax in mature embryos of the estuarine crab Sesarma haematocheir. Each rosette gland is spherical, 45-50 microm in diameter. This gland consists of three types of cells: 18-20 secretory cells, one central cell, and one canal cell. The secretory cells are further classified into two types on the basis of the morphology of secretory granules. There are 17-19 a cells, and only one b cell per rosette gland. An a cell contains spherical secretory granules of 2-3 microm in diameter. The granules are filled with highly electron-dense materials near the nucleus but have lower electron-density near the central cell. The secretory granules contained in the b cell have an irregular shape and are 1-1.5 microm in diameter. The density of the materials in the granules is uniform throughout the cytoplasm. The secretory granules contained in both the a and b cells are produced by the rough endoplasmic reticulum. Materials in the granules are exocytotically discharged into the secretory apparatus inside the secretory cell, sent to the extracellular channels in the central cell, and secreted through the canal cell. The rosette gland can be distinguished from the epidermal cells 2 weeks after egg-laying and the gland matures just before hatching. Materials produced by this gland are secreted after hatching and secretion continues through five stages of zoeal larvae. These rosette glands were never found in the megalopal larva. Rosette glands are found in the embryos of Sesarma spp. and Uca spp. In other crabs, tegumental glands are also found at the same position as in the embryo of S. haematocheir, but the fine structure of their glands is largely different from that of the rosette gland. On the basis of the morphology of secretory cells (a-g cell types), the tegumental glands of a variety of crab embryos can be classified into four types, including rosette glands (type I-IV). The function of these tegumental glands is not yet known, but different types of the gland seem to reflect the phylogeny of the crabs rather than differences of habitat.  相似文献   

10.
The stratified epithelium of the central collecting duct of the elasmobranch(Scylliorhinus canicula, Galeorhinus galeus andRaja batis) rectal gland consists of 3 to 6 layers of cells: one superficial, and several basal cell layers. In the superficial layer normally three different types of cells can be distinguished (a) goblet cells, (b) cells with apical secretory granules and (c) flask-shaped cells. The superficial layer ofScylliorhinus canicula reveals a further cell type, so-called mitochondria-rich cells. The epithelial areas built by these cells are always single-layered. The goblet-cells are very similar to goblet cells found in the intestine of vertebrates. Their dominant structures are a well developed ergastoplasm, a large Golgi-apparatus and mucous granules compactly filling the apical cell region. The cells with apical secretory granules are columnar or dumbbell shaped. They contain a rough-surfaced endoplasmic reticulum and a well developed Golgi-apparatus. The secretory granules are loosely distributed within the Golgi-field and are arranged in one or more rows just below the cell apex. The flask shaped cells are characterized by a cytoplasm rich in small vesicles. They posses few dictyosomes and several small mitochondria. There is some evidence for endocytotic activity. The mitochondria-rich cells are characterized by lateral cell interdigitations, by a basal labyrinth and by numerous mitochondria. They are similar to the excretory cells of rectal gland parenchyma. The cells of the basal epithelium layers are differenciated only to a small extent. They are joined in a loose formation with white blood cells often found in the intercellular spaces. The function of the elasmobranch rectal gland is not restricted to the excretion of concentrated salt solutions. There is also a significant secretion of mucous substances. The tubule glands are primarily excretory, the epithelium cells of the central collecting duct mainly secretory in function.  相似文献   

11.
Summary The localization of avidin in the oviduct of the laying hen was investigated using ultrastructural immunoperoxidase techniques. Endogenous avidin was localized in secretory granules of both tubular gland cells and non-ciliated single epithelial cells in the magnum mucosa. These immunospecific granules were electron-dense and heterogeneous with a patchy core and dense peripheral region, especially in acinar cells. The size varied from small to large in the gland cells (500–2200 nm in diameter) and remained small in the epithelial cells (180–720 nm). Columnar epithelial cells containing avidin granules strongly resembled the protodifferentiated tubular gland cells appearing in the magnum mucosa of chicks artificially pretreated with ovarian hormones. On the other hand, no avidin was observed in either epithelial goblet cells or ciliated cells in adult hens, although both cell types were shown to produce avidin in young chicks when synchronized by the administration of progesterone. The present results parallel those obtained with biotinylated enzyme affinity methods in our previous cytochemical study.Therefore, avidin is one of the proteins produced and stored in the secretory granules of the tubular gland cells and protodifferentiated acinar cells present in the epithelial layer of the laying hen oviduct. It is not present in goblet cells. Although the initiation of a synthesis may be triggered by progesterone, it is still not clear whether different hormone dependent proteins are localized in the same granules in both the adult hen and the immature chick.  相似文献   

12.
Tachibana T  Ito T 《Human cell》2003,16(4):205-215
In order to elucidate the effects of hypothalamic regulation on the morphology of GH cells, light and electron microscopic immunocytochemical examinations were carried out comparing GH cells in the anterior pituitary gland of anencephalic fetus with those of normal fetuses. Three types of GH cells were identified in the anterior pituitary gland of anencephalic fetus as well as in the normal fetus. Type-I is a small, round cell containing a few small secretory granules. Type-III is a large, polygonal cell with numerous large secretory granules. Type-II is a polygonal cell with medium-sized secretory granules. The Type-II GH cell was predominant in both anencephalic and normal fetuses. The most striking difference between anencephalic and normal fetuses was the presence of atypical forms of the Type II cell. These were polygonal cells containing secretory granules, which were either immunopositive or immunonegative to anti-human GH (anti-hGH) serum. Furthermore, two other types of GH cells were identified. The somatomammotroph (SM cell) contained GH and PRL in different granules within the same cell. Also, a different type of the GH cell was noted containing two varieties of secretory granules; one was immunolabeled only with anti-hGH and the other was not immunolabeled to either anti-hGH or anti-human PRL (anti-hPRL). From these results, we suggest that an absence of hypothalamic regulation in the anencehpalic does not seriously modify GH cell morphology but induces an altered GH storage pattern in some of the cells.  相似文献   

13.
The ultrastructural study of the secretory cells type 1 and 2 confirmed the separate identities of two secretory cell types in the gut of female B. microplus. Secretory cell type 1 (s1) synthesized and secreted large, spherical, uniformly electrondense granules. Secretory cell type 2 (s2) synthesized smaller, irregularly shaped and more complex granules. Another cell type, the basophilic cell, was shown to be the reorganized basal remnant of secretory cell s2. A few of the basophilic cells retained remnant s2 granules within their cytoplasm. In these cells the reorganized cisternae of rough endoplasmic reticulum were arranged in whorls and parallel arrays. The cells synthesized granules with a different ultrastructure and position in the cell from the earlier granules. The new secretory material may be egg proteins which are released into the haemolymph, and transported to the ovary. Another secretory cell type with smaller spherical granules was seen in the gut caeca of only two female ticks and more evidence is needed to prove its separate identity.  相似文献   

14.
The insulin-responsive glucose transporter GLUT-4 is found in muscle and fat cells in the transGolgi reticulum (TGR) and in an intracellular tubulovesicular compartment, from where it undergoes insulindependent movement to the cell surface. To examine the relationship between these GLUT-4–containing compartments and the regulated secretory pathway we have localized GLUT-4 in atrial cardiomyocytes. This cell type secretes an antihypertensive hormone, referred to as the atrial natriuretic factor (ANF), in response to elevated blood pressure. We show that GLUT-4 is targeted in the atrial cell to the TGR and a tubulo-vesicular compartment, which is morphologically and functionally indistinguishable from the intracellular GLUT-4 compartment found in other types of myocytes and in fat cells, and in addition to the ANF secretory granules. Forming ANF granules are present throughout all Golgi cisternae but only become GLUT4 positive in the TGR. The inability of cyclohexamide treatment to effect the TGR localization of GLUT-4 indicates that GLUT-4 enters the ANF secretory granules at the TGR via the recycling pathway and not via the biosynthetic pathway. These data suggest that a large proportion of GLUT-4 must recycle via the TGR in insulin-sensitive cells. It will be important to determine if this is the pathway by which the insulin-regulatable tubulo-vesicular compartment is formed.  相似文献   

15.
K. Rhode 《Zoomorphology》1986,106(2):91-102
Summary The fine structure of larval Austramphilina elongata is described using serial semithin and ultrathin sections. Densely packed germ cells with many ribosomes and mitochondria and with large Golgi complexes fill the middle third of the body. Some necrotic nuclei were observed near the anterior end. The neodermis consists of a subepidermal syncytium connected to pericarya in the parenchyma by means of cytoplasmic processes containing peripheral microtubules; electron-dense ovoid bodies condense in these processes. Myoblasts are connected to muscle fibres by means of cytoplasmic connections rich in mitochondria. Twelve (exceptionally eleven) type I gland cells containing large secretory granules and extensive granular endoplasmic reticulum are located in the dorso-posterior part of the body; they open through 12 (or 11) discrete ducts into an anterior invagination of the tegument which is covered by epidermis and not connected to the outside. Ten type II gland cells containing elongate secretory granules with regularly arranged longitudinal microtubules are located ventral to the type I cell bodies; they open on a ventral papilla a short distance behind the anterior end. Ten type III gland cells containing irregularly round-oval secretory granules with coiled microtubules are located anterior and ventral to the type I gland cells; they open through five discrete ventro-anterior openings on each side of the body. Ducts of all gland cells have mitochondria and microtubules. The spermatozoon has a basic pattern of two axonemes, each with a single central filament, a mitochondrion (mitochondria), and a row of surface microtubules interrupted by the axonemes. In the tips of epidermal cilia, doublet 1 and doublets adjacent to it lose their microtubules B first and close in on the central pair of filaments in a spiral fashion, enclosing an electron-dense rod. Presence of a neodermis and ultrastructure of the spermatozoon support the validity of the taxa Neodermata Ehlers and Trepaxonemata Ehlers and are strong evidence against a phylogenetic relationship of the cestodarians — cestodes with the Acoelomorpha; this is also indicated by the ultrastructure of sense receptors and epidermal ciliary rootlets.  相似文献   

16.
The venom gland of Crotalus viridis oreganus is composed of two discrete secretory regions: a small anterior portion, the accessory gland, and a much larger main gland. These two glands are joined by a short primary duct consisting of simple columnar secretory cells and basal horizontal cells. The main gland has at least four morphologically distinct cell types: secretory cells, the dominant cell of the gland, mitochondria-rich cells, horizontal cells, and “dark” cells. Scanning electron microscopy shows that the mitochondria-rich cells are recessed into pits of varying depth; these cells do not secrete. Horizontal cells may serve as secretory stem cells, and “dark” cells may be myoepithelial cells. The accessory gland contains at least six distinct cell types: mucosecretory cells with large mucous granules, mitochondria-rich cells with apical vesicles, mitochondria-rich cells with electron-dense secretory granules, mitochondria-rich cells with numerous cilia, horizontal cells, and “dark” cells. Mitochondria-rich cells with apical vesicles or cilia cover much of the apical surface of mucosecretory cells and these three cell types are found in the anterior distal tubules of the accessory gland. The posterior regions of the accessory gland lack mucosecretory cells and do not appear to secrete. Ciliated cells have not been noted previously in snake venom glands. Release of secretory products (venom) into the lumen of the main gland is by exocytosis of granules and by release of intact membrane-bound vesicles. Following venom extraction, main gland secretory and mitochondria-rich cells increase in height, and protein synthesis (as suggested by rough endoplasmic reticulum proliferation) increases dramatically. No new cell types or alterations in morphology were noted among glands taken from either adult or juvenile snakes, even though the venom of each is quite distinct. In general, the glands of C. v. oreganus share structural similarities with those of crotalids and viperids previously described.  相似文献   

17.
Atrial gland induction of the egg-laying response inAplysia californica   总被引:1,自引:0,他引:1  
Summary The atrial gland of the large hermaphroditic duct of the reproductive tract ofAplysia californica contains a substance that will cause egg laying when injected into sexually mature recipient animals. Preliminary chemical characterization of the atrial gland factor indicates that it is quite similar to the egg-laying hormone synthesized and secreted by the bag cell neuroendocrine organs of the central nervous system. In view of the apparent identity of its effects with those of the egg-laying hormone on presumed neural and reproductive system targets, it is possible that the atrial gland factor plays an hitherto unsuspected role in reproductive regulation. Moreover, the molecular similarity between the atrial gland factor and the egg-laying hormone suggests the possibility that the same humorally active species may be elaborated by two distinct tissue types.This work was supported by grants from the Medical Research Foundation of Oregon and USPHS (NS 11149). C. McC. was recipient of a Zlinkoff Research Fellowship. Dr. R. Beeman kindly confirmed our identification of the location and general morphology of the atrial gland.  相似文献   

18.
MORPHOLOGICAL AND FUNCTIONAL ASPECTS OF AN INSECT EPIDERMAL GLAND   总被引:2,自引:2,他引:0       下载免费PDF全文
The sternal gland of primitive termites of the genus Zootermopsis (Z. nevadensis or Z. angusticollus) (Hagen) seems more organized than that of higher termites, in being comprised of three cell layers. It is also studded with about 200 campaniform sensilla. Below the meshwork cuticle of the gland lies a layer of columnar epithelial cells whose apical surfaces form a brush border, and whose basal surfaces are sculptured into a basketwork into which the second layer fits. Below the brush border are small microtubule-associated pits and coated vesicles. No channels can be seen either within or, except for the sensilla, between the cells. The second cell layer probably secretes the trail-following pheromone. Numerous electron-lucent droplets and large channels containing lipid micelles are found in the cytoplasm here, but the channels cannot be traced out of the secretory layer. The third layer consists of large pyriform cells. The campaniform sensilla are composed of three cells: the sensory cell proper whose dendrite carries a modified 9 + 0 sensory process, an accessory supporting cell that secretes an electron-opaque sheath, and an enveloping cell. At the cell borders of the sensillum, regions of septate and tight junction appear. There are also septate junctions between columnar cells and possibly tight junctions between columnar and secretory cells that would open an intracellular and molecular pathway to the endocuticle. The campaniform sensilla may be part of a feedback control system that determines the amount of pheromone deposited during trail laying.  相似文献   

19.
An abdominal pheromone-producing gland in Atta sp. was examined using light and electron microscopy techniques. The gland is composed of a bunch of juxtaposed secretory units in which the secretory ductules open on to a cribellum close to the sting base.The structure and cycles of the secreting units are described. Each includes a secretory cell with an ‘end apparatus’, ductule cells and epidermal cells. The secretory cycle of glycoproteins accumulated in the ‘end apparatus’ is discussed and a functional interpretation of the morphological components of the application system is proposed.  相似文献   

20.
Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号