首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Four groups of intracellular structures can be recognized according to bismuth and uranyl staining and phosphorus content. (1) Those which contain phosphorus and stain strongly with uranyl acetate but not with bismuth (ribosomes, heterochromatin and mature ribosomal precursor granules), presumably because of their nucleic acid content. (2) Those which contain phosphorus and stain with uranyl acetate and bismuth (interchromatin granules, immature ribosomal precursor granules and mitochondrial granules), presumably because at least some of their phosphate is available to react with bismuth. (3) Those which contain little phosphorus but which stain strongly with bismuth and weakly with uranyl acetate (Golgi complex beads), perhaps because some ligand in addition to phosphate reacts with bismuth, and (4) those which do not contain phosphorus and stain with neither uranyl acetate nor bismuth (portasomes). Uranyl staining correlates strongly with the phosphorus content of nucleic acids, proteins and inorganic deposits. Bismuth will stain some phosphorylated molecules but not all. Thus only some phosphates stain with bismuth.  相似文献   

2.
The region between the rough endoplasmic reticulum (ER) and the Golgi complex has been studied in a variety of insect cell types in an attempt to find a marker for the exit gate or gates from the ER. We have found that the smooth surface of the rough endoplasmic reticulum near Golgi complex transitional elements has beadlike structures arranged in rings at the base of transition vesicles. They occur in all insect cell types and a variety of other organisms. The beads can be seen only after staining in bismuth salts. They are 10-12 nm in diameter and are separated from the membrane and one another by a clear halo giving them a center to center spacing of about 27 nm. The beads are not sensitive to nucleases under conditions which disrupt ribosomes or remove all Feulgen staining material from the nucleus. Under conditions similar to those used to stain tissue, bismuth does not react in vitro with nucleic acids. The component of the beads that stains preferentially with bismuth is therefore probably not nucleic acid.  相似文献   

3.
M Locke  P Huie 《Tissue & cell》1977,9(2):347-371
Bismuth salts on aldehyde fixed tissue give a highly selective pattern of staining suitable for light and electron microscopy. Structures stained include the nucleolus, ribosomes, inter- and perichromatin granules, the Golgi complex beads and the outer face of the tubule doublets of mouse sperm, certain neurosecretory vesicles believed to contain biogenic amines, some junctions (some central synapses, neuromuscular junctions, tight junctions), specialized membranes such as the post acrosomal dense lamina of mouse sperm and the inner alveolar membrane of Paramecium, and a variety of structures associated with the cytoplasmic face of membranes, such as plasma membrane plaques, cleavage furrows, the leading edge of the spreading acrosome and sperm annuli.Staining is not reduced by nucleases and spot tests show no reaction between nucleic acids and bismuth under conditions similar to those used to stain tissues. However, spot tests do show strong binding of bismuth by basic proteins and by some phosphorylated molecules.It is hypothesized that bismuth reacts with cell components in two ways, distinguishable by their glutaraldehyde sensitivity. For example, staining of the nucleolus and ribosomes is blocked by glutaraldehyde but the inter- and perichromatin granules and the GC beads are unaffected. Spot tests show that basic proteins (histones, protamines, polylysine and polyargenine) and other molecules with free amino groups (5HT, tryptamine, dopamine) bind bismuth strongly, a reaction that is blocked to varying degrees by glutaraldehyde. We presume that most bismuth staining of tissues is due to reaction with amine groups and is glutaraldehyde sensitive and some may be due to guanidine groups which are less sensitive to fixation by glutaraldehyde. Organic phosphates may be the cause of the glutaraldehyde insensitive staining since ATP and some other phosphates bind bismuth in a reaction that is not blocked by glutaraldehyde.  相似文献   

4.
D A Brodie 《Tissue & cell》1982,14(2):253-262
Addition of tannic acid to the primary glutaraldehyde fixative and the viewing of thin sections by stereo electron microscopy greatly simplifies the detection of vertebrate cell Golgi complex beads which are otherwise difficult to see since they do not stain with bismuth. These results confirm the generality of conclusions from experiments on arthropod beads which are easily observed because of their bismuth affinity. In vertebrate and arthropod cells, bead rings encircle the base of forming transition vesicles below the growing portion of the vesicle that is covered with a clathrin coat. Their unique position at such a sharp functional and structural boundary in intercompartmental transport suggests that the bead rings may specify a select region of rough endoplasmic reticulum devoid of ribosomes where clathrin coats can induce transition vesicle formation and prevent intermixing of the elements of a returning transition vesicle.  相似文献   

5.
The applicability of the electron spectroscopic imaging technique for detection of the intracellular distribution of calcium in plant cells was tested with calyptra cells ofZea mays and with pollen tubes ofLilium longiflorum. After fixation in enhanced Ca2+ levels and embedding in resin, ultrathin sections were analyzed for the elemental distribution. Calcium and phosphorus were enriched in cell wall, plasma membrane, endoplasmic reticulum, mitochondria, and Golgi vesicles, mainly in granular or globular deposits appearing electron dense in transmission electron microscopy. The results demonstrated that the ESI-technique allows exact localization of calcium enrichment relative to specific cell organelles.  相似文献   

6.
This study was conducted to obtain a better insight into the metabolic behavior of denitrifying phosphate-accumulating organisms relative to the transformations of relevant intracellular compounds as well as phosphorus and nitrate for enhanced biological phosphorus removal under different combinations of electron acceptor (oxygen or nitrate) and electron donor (acetate). Under anoxic conditions, the amount of polyhydroxybutyrate (PHB) produced per acetate taken up considerably increased with the increasing amount of nitrate reduced whereas the amounts of nitrate reduced and phosphorus released per acetate taken up remained almost constant. However, glycogen utilization occurred during PHB production and then was again observed in response to the initial supplementation of acetate after glycogen accumulation was transiently observed during anoxic phosphorus uptake using nitrate as an electron acceptor. On the other hand, under subsequent aerobic conditions, the additional supplementation of acetate again caused aerobic phosphorus release and PHB production, which showed that PHB production was associated with polyphosphate cleavage regardless of electron acceptor conditions. In contrast to anoxic conditions, glycogen accumulation was observed during PHB production. Based on these observations, the preliminary model for the metabolic behavior of denitrifying phosphate-accumulating organisms was proposed and could well account for the complex transformations of PHB and glycogen together with phosphorus release in the presence of acetate under different electron acceptors.  相似文献   

7.
M. Locke  P. Huie 《Tissue & cell》1976,8(4):739-743
Insects and other arthropods have bead-like structures in Golgi complexes from all cell types. They are arranged in rings at the base of transition vesicles located near the smooth surface of the rough endoplasmic reticulum making the forming face of the Golgi complex and are only seen easily after staining in bismuth salts. Procedures used to demonstrate the beads in arthropod Golgi complexes do not selectively stain any structures where they would be expected to occur in several mouse and tadpole tissues. However, a faint pattern similar to the arthropod GC beads can be made out in the large GCs concerned in the formation of acrosomes during mouse spermatogenesis. Uranyl staining shows particles of about the same size and spacing as the beads of arthropod GCs. We conclude that vertebrate GCs may have beads that differ from arthropods in their staining properties.  相似文献   

8.
Using electron spectroscopic imaging, a new type of small granular structural constituent has been observed in the extrachromosomal zone of the polytene nucleus of the salivary gland cells ofChironomus thummi andChironomus tentans. These granules appear isolated or in small clumps and are often seen to be connected with surrounding thin fibrils. They are stained by the EDTA procedure, which is preferential for nuclear ribonucleoprotein (RNP) constituents, and by the bismuth oxynitrate method for visualizing phosphorylated compounds. The granules are 15–23 nm in diameter and are digested by prolonged post-embedding RNAse hydrolysis. These structural elements contain the highest concentration of phosphorus in the interchromosomal space as revealed by electron energy loss spectroscopy. The small granules exhibit several morphological and cytochemical features in common with interchromatin granules, but they are not labeled with antibodies directed against extranucleolar small nuclear RNPs (snRNPs), as are interchromatin granules.  相似文献   

9.
The mammalian genome is compacted to fit within the confines of the cell nucleus. DNA is wrapped around nucleosomes, forming the classic ‘beads‐on‐a‐string’ 10‐nm chromatin fibre. Ten‐nanometre chromatin fibres are thought to condense into 30‐nm fibres. This structural reorganization is widely assumed to correspond to transitions between active and repressed chromatin, thereby representing a chief regulatory event. Here, by combining electron spectroscopic imaging with tomography, three‐dimensional images are generated, revealing that both open and closed chromatin domains in mouse somatic cells comprise 10‐nm fibres. These findings indicate that the 30‐nm chromatin model does not reflect the true regulatory structure in vivo.  相似文献   

10.
Localization of silver grains detected by the silver-impregnation method, a technique used to detect the classical Golgi apparatus, was examined with light and electron microscopy. Two types of silvered images of the Golgi apparatus were compared; each was obtained by Da Fano 's silver-impregnation method, and one was modified with Caulfield 's fixative during the preliminary fixation. Under ordinary light microscopy the images were very similar and showed the duplex structure of the Golgi apparatus which consists of an argentophil wall and argentophobe core. With electron microscopy, the relationship between the fine structure of the Golgi complex and the silver deposits was obtained in greater detail by the latter technique because the fine structure of the Golgi complex was retained. Many fine silver grains were detected in the cytoplasm adjacent to the Golgi complex, but none were present in the Golgi cisternae. This suggests that the argentophil wall of the duplex structure of the classical Golgi apparatus may be formed from argentophil substances that locate in the cytoplasm adjacent to the Golgi lamellae, and that the argentophobe core may be related to the Golgi lamellae.  相似文献   

11.
Light Golgi fractions (GF(1+2)) prepared from rat liver homogenates by a modification of the Ehrenreich et al. procedure (J. Cell Biol. 59:45) had significant NADPH-cytochrome P(450) reductase (NADPH-cyt c reductase) activity if assayed immediately after their isolation. An antibody raised in rabbits against purified microsomal and Golgi fractions. To find out whether this activity is located in bona fide Golgi elements or in contaminating microsomal vesicles, we used the following 3-step immunoadsorption procedure: (a) antirabbit IgG (raised in goats) was conjugated to small (2-5 μm) polycrylamide (PA) beads; (b) rabbit anti NADPH-cyt c reductase was immunoadsorbed to the antibody-coated beads; and (c) GF(1+2) was reacted with the beads carrying the two successive layers of antibodies. The beads were then recovered by centrifugation, and were washed, fixed, embedded in agarose, and processed for transmission electromicroscopy. Antireductase- coated beads absorbed 60 percent of the NADPH-cyt c reductase (and comparable fractions of NADH-cyt c reductase and glucose-6-phosphatase) but only 20 percent of the galactosyltransferase activity of the input GF(1+2). Differential vesicle counts showed that approximately 72 percent of the immunoadsorbed vesicles were morphologically recognizable Golgi elements (vesicles with very low density lipoprotein [VLDL] clusters or Golgi cisternae); vesicles with single VLDL and smooth surfaced microsome-like vesicles were too few (approximately 25 percent) to account for the activity. It is concluded that NADPH-cytochrome P(450) reductase is a Golgi membrane enzyme of probably uneven distribution among the elements of the Golgi complex.  相似文献   

12.
Golgi complex beads are 10-nm particles arranged in rings on the smooth surface of rough endoplasmic reticulum (ER) makind the forming face of the Golgi complex (GC). In arthropod cells they stain specifically with bismuth. Their morphology has been studied after treatment with reagents known to interfere with GC function. Inhibitors of oxidative phosphorylation (antimycin A, cyanide, and anoxia), but not an inhibitor of glycolysis (iodoacetate), both cause the bead rings to collapse and the GC saccules to round up, and inhibit transition vesicle (TV) formation. Cycloheximide blocks protein synthesis on ribosomes but does not stop TV formation or disrupt bead rings, even after prolonged treatment (6 h) to allow emptying of the rough ER cisternae. Thus the collapse of bead rings is not attributable to inhibition of protein synthesis, and the ring structure of beads does not require continued protein synthesis and secretion for its maintenance. Valinomycin has effects on the GC similar to those of antimycin A, but A23187, monensin, and lasalocid do not affect bead ring structure or TV formation. These results are consistent with valinomycin’s secondarily uncoupling mitochondria, which collapses bead rings and prevents TV formation. Thus inhibitors of oxidative phosphorylation do not influence the beads through cation movement. Because mononsin and lasalocid block secretion at the level of the condensing vacuoles, bead rings are not influenced by blocks in secretion distal to them or by the backup of secretory material. These experiments are consistent with inhibitors of oxidative phosphorylation collapsing bead rings by decreasing intracellular ATP. The concomitant block to TV formation and the collapse of bead rings suggests that integrity of the bead rings is essential for the transport of secretory material from the rough ER to the GC.  相似文献   

13.
The localization of surface and internal acetylcholine (ACh) receptors was investigated in the developing anterior and posterior latissimus dorsi (ALD and PLD) muscles in the chick embryo (11, 15, and 19 days) by autoradiography using 125I-α-bungarotoxin (BTX). At 11 days, ACh receptors were already preferentially at neuromuscular junctions. Internal ACh receptors, measured using muscles made permeable to BTX by saponin treatment, were scattered throughout the length of each muscle fiber with or without a slight increase in their number around neuromuscular junctions. Quantitative analysis of grains in montage electron micrographs of muscle fibers from 11-day embryos revealed that intracellular specific BTX binding sites were the Golgi complex and multivesicular bodies. The number of silver grains over the Golgi complex decreased greatly after puromycin treatment of organ-cultured muscles. These findings strongly suggest that the Golgi complex is one of the sites involved in the production of ACh receptors in the skeletal muscle cells in vivo. Multivesicular bodies are assumed to be involved in the degradation of ACh receptors.  相似文献   

14.
Secretory proteins and membranes move in transfer vesicles from the rough endoplasmic reticulum through the transition region to the outer saccule of the Golgi complex. In both arthropod and vertebrate cells, the GC beads are a characteristic structural component of the transitional region. The beads are particles about half the size of ribosomes arranged equidistantly from one another and the smooth face of the ER. In an active GC, the beads are in rings through which the ER membrane emerges to form transfer vesicles. The beads may be part of the energy-dependent step required for the movement of proteins along eht secretory pathway, since they lose their ring arrangement under conditions that lower cellular ATP. The beads are organizers for Golgi complexes in the sense that they are the first recognizable components of new GCs as they arise from ER. Arthropod GC beads, but not those of vertebrates, can be visualized through their reaction with bismuth in vivo and in fixed tissue. Useful paradigms for traffic between the ER and the GC need to combine structural and biochemical information. Insect fat body, with its readily resolvable bismuth-strained beads and easily fractionated cell components may have particular value for this problem.  相似文献   

15.
Kazuhiko Satoh  Sakae Katoh 《BBA》1979,545(3):454-465
Light -induced absorbance changes at 560 nm in dark-adapted intact chloroplasts of the green alga, Bryopsis maxima were studied in the time range of 200 ms. The initial rise of the 560 nm signals constists of two major components which are both electrochromic absorbance changes of the carotenoids, sipnonein and/or siphonaxanthin, but different in mechanisms of the field formation.The first component (component S) is related to electron transport since it was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and showed a light-intensity dependence similar to that of electron transport in chloroplasts. In the presence of DCMU, component S could be restored on addition of proton-transporting electron donors such as reduced 2,6-dichlorophenol indophenol and phenazine methosulfate, but not on addition of N,N,N′,N′-tetramethyl-p-phenylenediamine which does not carry protons with electrons (Trebst, A. (1974) Annu. Rev. Plant Physiol. 25, 423–458). We propose that component S is due to the electric field set up by the proton translocation across the thylakoid membrane.The second component (component R) was resistant to DCMU and DBMIB. The light-intensity dependency of component R was similar to that of cytochrome f photooxidation which showed saturation at a relatively low light intensity. The magnitude of component R was markedly reduced by phenylmercuric acetate, suggesting the participation of ferredoxin and ferredoxin-NADP oxidoreductase in the mechanism of the field formation responsible for this component. In the presence of DCMU and phenylmercuric acetate, time courses of the 560 nm changes paralleled those of cytochrome f changes. These results indicate that component R is due to the electric field formed between oxidized cytochrome f and other intersystem electron carriers located in the inner part of the thylakoid membrane and reduced electron acceptors of Photosystem I situated on the membrane surface.The complex natures of the 560 nm changes, as well as the contributions of Photosystems I and II to the absorbance changes, are explained in terms of the two electrogenic mechanisms.  相似文献   

16.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

17.
We have developed an in vitro assay for characterizing the binding of elements of the Golgi complex to microtubules. The binding assay comprises three distinct components, Golgi elements purified from Vero cells by subcellular fractionation, taxol-polymerized tubulin from bovine brain coupled to magnetic beads and cytosol from HeLa cells. Binding of Golgi elements to microtubules is quantitated by measuring the activity of the Golgi marker enzyme, galactosyltransferase, associated with the microtubule-coated beads retrieved with a magnet. In the presence of cytosol, 35 to 45% of the total input of galactosyltransferase activity (Golgi elements) bind to microtubules; only 3% of the Golgi elements bind to microtubules, however, in the absence of cytosolic factors. This binding is saturable at a cytosol concentration of approximately 5 mg/ml or at a high input of Golgi elements. Cytosol-stimulated binding of Golgi elements to microtubules is decreased to less than 15% when cytosol is pretreated with 2 mM N-ethylmaleimide (NEM) and it is abolished when cytosolic proteins are inactivated by heat or when microtubules have been coated with heat-stable microtubule-associated proteins (MAPs). Trypsinization of the membranes of the Golgi elements abolishes their ability to bind to microtubules. Furthermore, inactivation of cytoplasmic dynein by UV/vanadate treatment does not affect the binding. This suggests that the interaction of Golgi elements with microtubules depends on NEM-sensitive cytosolic factors and membrane-associated receptors, but not on the microtubule-based motor protein cytoplasmic dynein.  相似文献   

18.
The uptake and transport of cholesterol-carrying low density lipoprotein (LDL) by the arterial wall is a continuous dynamic process, contributing to the cholesterol homeostasis in the plasma and in the cellular components of the vessel wall. Upon exposure to endothelial cells (EC), LDL interacts in part, with specific surface receptors (LDL-R). In this study we questioned: (i) the distribution of LDL receptors on the apical and basal cell membranes in endothelial cells; (ii) the role of LDL receptors in the control of cholesterol homeostasis and (iii) the translocation of LDL receptor across the EC. To this purpose bovine aortic EC were cultured on filters in a double-chamber system, in Dulbecco's medium supplemented either with 10% fetal calf serum (FCS) or with 10% lipoprotein-deficient serum (LPDS). The cells were exposed for 3h to 13H]acetate (40 microCi) added to both compartments of the cell culture inserts. The newly synthesized [3H]cholesterol was detected by thin layer chromatography and quantified by liquid scintillation counting. The LDL-R were detected in EC protein homogenates by immunoblotting using a monoclonal antibody against LDL-R (IgG-C7); the intracellular pathway of LDL-R was examined by electron microscopy using a complex made of protein A 5 nm or 20 nm colloidal gold particles and an anti-LDL receptor antibody (Au-PA-C7). To evaluate the distribution and the transport of LDL-R from one cell surface to the other, EC grown in LPDS were radioiodinated either on the apical or on the basolateral surface, incubated on the same surface with LDL, and subsequently biotinylated on the opposite non-radiolabeled surface. The EC were further solubilized and the protein extract immunoprecipitated with anti-LDL-R antibody or with mouse IgG (as control). The eluted antigen-antibody complexes were precipitated with streptavidin-agarose beads, solubilized, and subjected to SDS-PAGE. The results showed that: (a) the LDL-R were present on both endothelial cell fronts; (b) using the complex Au-PA-C7, the LDL-R were localized in endothelial plasmalemmal vesicles as well as coated pits and coated vesicles in multivesicular bodies and lysosomes, irrespective of the cell surface exposed to the complex; (c) biochemical assays indicated that upon ligand binding, the LDL-R were translocated preferentially from the apical to the basal plasma membrane.  相似文献   

19.
The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants.  相似文献   

20.
The inhomogeneity of alginate gel beads prepared by an external diffusion method has been characterised using spatially resolved nuclear magnetic resonance or “magnetic resonance imaging” (MRI) and transmission electron microscopy (TEM). The beads exhibited various degrees of inhomogeneity although reducing the length of exposure to the gelling bath and the presence of non-gelling ions decreased gel inhomogeneity. In order to gain information regarding the gastro-intestinal functionality of these beads for in vivo applications, they were exposed to simulated gastro-intestinal conditions. The increased polymer concentration at the edge of the beads was shown to persist throughout our gastro-intestinal model despite the centre of the bead becoming progressively more porous in nature. The porosity of the alginate gels has been quantified by image analysis of transmission electron micrographs and shown to depend on both location within the bead and gastro-intestinal conditions. We suggest that such changes in porosity of these alginate beads during simulated gastro-intestinal conditions may make these an attractive option for controlled delivery applications in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号